Unmanned aerial vehicles (UAVs) represent a new model of social robots for home care of dependent persons. In this regard, this article introduces a study on people’s feeling of safety and comfort while watching the monitoring trajectory of a quadrotor dedicated to determining their condition. Three main parameters are evaluated: the relative monitoring altitude, the monitoring velocity and the shape of the monitoring path around the person (ellipsoidal or circular). For this purpose, a new trajectory generator based on a state machine, which is successfully implemented and simulated in MATLAB/Simulink®, is described. The study is carried out with 37 participants using a virtual reality (VR) platform based on two modules, UAV simulator and VR Visualiser, both communicating through the MQTT protocol. The participants’ preferences have been a high relative monitoring altitude, a high monitoring velocity and a circular path. These choices are a starting point for the design of trustworthy socially assistive UAVs flying in real homes.
Continued advances in machine learning (ML) and deep learning (DL) present new opportunities for use in a wide range of applications. One prominent application of these technologies is defect detection and classification in the manufacturing industry in order to minimise costs and ensure customer satisfaction. Specifically, this scoping review focuses on inspection operations in the semiconductor manufacturing industry where different ML and DL techniques and configurations have been used for defect detection and classification. Inspection operations have traditionally been carried out by specialised personnel in charge of visually judging the images obtained with a scanning electron microscope (SEM). This scoping review focuses on inspection operations in the semiconductor manufacturing industry where different ML and DL methods have been used to detect and classify defects in SEM images. We also include the performance results of the different techniques and configurations described in the articles found. A thorough comparison of these results will help us to find the best solutions for future research related to the subject.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.