Early detection of stress condition is beneficial to prevent long-term mental illness like depression and anxiety. This paper introduces an accurate identification of stress/calm condition from electrodermal activity (EDA) signals. The acquisition of EDA signals from a commercial wearable as well as their storage and processing are presented. Several time-domain, frequency-domain and morphological features are extracted over the skin conductance response of the EDA signals. Afterwards, a classification is undergone by using several classical support vector machines (SVMs) and deep support vector machines (D-SVMs). In addition, several binary classifiers are also compared with SVMs in the stress/calm identification task. Moreover, a series of video clips evoking calm and stress conditions have been viewed by 147 volunteers in order to validate the classification results. The highest F1-score obtained for SVMs and D-SVMs are 83% and 92%, respectively. These results demonstrate that not only classical SVMs are appropriate for classification of biomarker signals, but D-SVMs are very competitive in comparison to other classification techniques. In addition, the results have enabled drawing useful considerations for the future use of SVMs and D-SVMs in the specific case of stress/calm identification.
Estimation of human emotions plays an important role in the development of modern brain-computer interface devices like the Emotiv EPOC+ headset. In this paper, we present an experiment to assess the classification accuracy of the emotional states provided by the headset’s application programming interface (API). In this experiment, several sets of images selected from the International Affective Picture System (IAPS) dataset are shown to sixteen participants wearing the headset. Firstly, the participants’ responses in form of a self-assessment manikin questionnaire to the emotions elicited are compared with the validated IAPS predefined valence, arousal and dominance values. After statistically demonstrating that the responses are highly correlated with the IAPS values, several artificial neural networks (ANNs) based on the multilayer perceptron architecture are tested to calculate the classification accuracy of the Emotiv EPOC+ API emotional outcomes. The best result is obtained for an ANN configuration with three hidden layers, and 30, 8 and 3 neurons for layers 1, 2 and 3, respectively. This configuration offers 85% classification accuracy, which means that the emotional estimation provided by the headset can be used with high confidence in real-time applications that are based on users’ emotional states. Thus the emotional states given by the headset’s API may be used with no further processing of the electroencephalogram signals acquired from the scalp, which would add a level of difficulty.
Early detection of stress can prevent us from suffering from a long-term illness such as depression and anxiety. This article presents a scoping review of stress detection based on electrodermal activity (EDA) and machine learning (ML). From an initial set of 395 articles searched in six scientific databases, 58 were finally selected according to various criteria established. The scoping review has made it possible to analyse all the steps to which the EDA signals are subjected: acquisition, preprocessing, processing and feature extraction. Finally, all the ML techniques applied to the features of this signal have been studied for stress detection. It has been found that support vector machines and artificial neural networks stand out within the supervised learning methods given their high performance values. On the contrary, it has been evidenced that unsupervised learning is not very common in the detection of stress through EDA. This scoping review concludes that the use of EDA for the detection of arousal variation (and stress detection) is widely spread, with very good results in its prediction with the ML methods found during this review.
Auditory hallucinations are common and distressing symptoms of the schizophrenia disease. It is commonly treated with pharmacological approaches but, unfortunately, such an approach is not effective in all patients. In the cases in which the use of antipsychotic drugs is not possible or not recommended, psychotherapeutic interventions are used to help patients gain power and control against hearing voices. Recently, virtual reality technologies have been incorporated to this type of therapies. A virtual representation of their voice (avatar) is created in a controlled computer-based environment, and the patient is encouraged to confront it. Unfortunately, the software tools used in these therapies are not described in depth and, even more important, to the best of our knowledge, their usability, utility and intention to use by therapists, and patients have not been evaluated enough. The involvement of end users in the software development is beneficial in obtaining useful and usable tools. Hence, the two contributions of this paper are (1) the description of an avatar creation system and the main technical details of the configuration of auditory hallucination avatars, and (2) its evaluation from both the therapists’ and the patients’ viewpoints. The evaluation does not only focus on usability, but also assesses the acceptance of the technology as an important indicator of the future use of a new technological tool. Moreover, the most important results, the lessons learned and the main limitations of our study are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.