Highly cross-linked polyethylenes (HXLPEs) have been incorporated into the hip replacement armamentarium based on their improved wear resistance. However, two different methods of thermal treatment separate the orthopedic community as strategies to control potential long-term oxidation, and controversy remains with problems in the long-term use of acetabular liners (long-term oxidation, rim fracture after impingement, etc.). Meanwhile, the mechanical properties of HXLPEs that may alleviate these problems are still unclear. On the other hand, HXLPEs are scarcely used in knee replacements, as there exists concern about the probably reduced fatigue and fracture performances of these materials. Thus, our aim was to compare the effects of both thermal treatment regimes on mechanical properties and to associate these findings with the material microstructure. The fatigue behavior of annealed and remelted HXLPEs was characterized using short-term cyclic stress-strain, long-term fatigue, and fatigue crack propagation tests. On the other hand, impact tests, tensile experiments, and the J-integral multispecimen method allowed us to assess toughness. Microstructure features such as crosslink density, crystallinity percentage, and lamellar thickness were investigated by swelling measurements, differential scanning calorimetry, and transmission electron microscopy, respectively. This study confirms that annealing preserves mechanical properties better than remelting from both fatigue and fracture resistance points of view, and it remarks that a suitable selection of irradiation and stabilization conditions is needed to achieve optimal mechanical performances of ultra high molecular weight polyethylenes for each specific total joint replacement.
Sixty Crossfire (Stryker Orthopaedics, Mahwah, NJ) liners were consecutively revised after an average of 2.9 years (range: 0.01 – 8.0 years) for reasons unrelated to wear or mechanical performance of the polyethylene. Femoral head penetration was measured directly from 42 retrievals implanted for over 1 year. Penetration rate results (0.04 mm/y, on average; range: 0.00-0.13 mm/y) confirmed decreasing wear rates with longer in vivo times. Overall, we observed oxidation levels at the bearing surface of the 60 liners (0.5, on average; range: 0.1-1.7) comparable to those of non-implanted liners (0.5, on average; range: 0.3-1.1) and preservation of mechanical properties. We also measured elevated oxidation of the rim (3.4, on average; range: 0.2-8.8) that was correlated with implantation time. Rim surface damage, however, was observed in only 3/60 (5%) cases. Retrieval analysis of the three rim-damaged liners did not reveal an association between surface damage and the reasons for revision.
This study reports on the suitability of different experimental techniques to evaluate chemical, microstructural and mechanical changes associated with in vivo oxidation encountered in historical polyethylene components. To accomplish this aim, eight traceable tibial inserts were analyzed after revision surgery. The knee bearings were gamma sterilized in air and implanted for an average of 11.5 years after a shelf life no longer than one year. Characterization of oxidation and transvinylene indexes, crystallinity, amorphous and intermediate phase fractions, along with hardness and surface modulus, were performed in transverse sections of each bearing using Fourier transform infrared spectroscopy, Raman spectroscopy, and nanoindentation, respectively. Generally, subsurface maxima in the crystallinity, oxidation index, and hardness were observed at a depth of about 1 mm in all of the bearings. The superior surfaces and anterior-posterior faces of the inserts exhibited significantly higher oxidation and greater crystallinity than the inferior side. These observations suggest that the metallic tray may limit the access of molecular oxygen to the backside of the tibial inserts. We conclude that chemical, physical, and mechanical property data confirm the occurrence of in vivo degradation in the long-term implanted knee components following gamma irradiation in air. Furthermore, infrared spectroscopy alone appeared to provide excellent insight into the oxidation and crystallization state of the in vivo oxidized polyethylene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.