Objective. We previously observed that T lymphocytes present in synovial fluid (SF) from patients with rheumatoid arthritis (RA) were sensitive to APO2L/ TRAIL. In addition, there was a drastic decrease in the amount of bioactive APO2L/TRAIL associated with exosomes in SF from RA patients. This study was undertaken to evaluate the effectiveness of bioactive APO2L/TRAIL conjugated with artificial lipid vesicles resembling natural exosomes as a treatment in a rabbit model of antigen-induced arthritis (AIA).Methods. We used a novel Ni
2؉-(N-5-amino-1-carboxypentyl)-iminodiacetic acid)-containing liposomal system. APO2L/TRAIL bound to liposomes was intraarticularly injected into the knees of animals with AIA. One week after treatment, rabbits were killed, and arthritic synovial tissue was analyzed.Results. Tethering APO2L/TRAIL to the liposome membrane increased its bioactivity and resulted in more effective treatment of AIA compared with soluble, unconjugated APO2L/TRAIL, with substantially reduced synovial hyperplasia and inflammation in rabbit knee joints. The results of biophysical studies suggested that the increased bioactivity of APO2L/TRAIL associated with liposomes was due to the increase in the local concentration of the recombinant protein, augmenting its receptor crosslinking potential, and not to conformational changes in the protein. In spite of this increase in bioactivity, the treatment lacked systemic toxicity and was not hepatotoxic.Conclusion. Our findings indicate that binding APO2L/TRAIL to the liposome membrane increases its bioactivity and results in effective treatment of AIA.
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into several mesoderm lineages. They have been isolated from different tissues, such as bone marrow, adult peripheral blood, umbilical cord blood, and adipose tissue. The aim of this study was to analyze the differences in proliferation and phenotype of adipose tissue-derived MSCs from three different species, and to evaluate their capacity to differentiate into chondrocytes in vitro. A comparative study of cultured human, rabbit, and sheep mesenchymal cells from adipose tissue was carried out, and the main morphological parameters, proliferative activity, and expression of surface markers were characterized. Proliferation and flow cytometry data showed species-related differences between animal and human MSCs. Histological staining suggested that rabbit and sheep mesenchymal cells were able to differentiate into chondrocytic lineages. Human mesenchymal cells, though they could also differentiate, accomplished it with more difficulty than animal MSCs. These results could help to explain the differences in the chondrogenic capacity of sheep and rabbit MSCs when they are used as animal models compared to human mesenchymal cells in a clinical assay. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.