Swimmers take great advantage by reducing the drag forces either in passive or active conditions. The purpose of this work is to determine the frontal area of swimmers by means of an automated vision system. The proposed algorithm is automated and also allows to determine lateral pose of the swimmer for training purposes. In this way, a step towards the determination of the instantaneous active drag is reached that could be obtained by correlating the effective frontal area of the swimmer to the velocity. This article shows a novel algorithm for estimating the frontal and lateral area in comparison with other models. The computing time allows to obtain a reasonable online representation of the results. The development of an automated method to obtain the frontal surface area during swimming increases the knowledge of the temporal fluctuation of the frontal surface area in swimming. It would allow the best monitoring of a swimmer in their swimming training sessions. Further works will present the complete device, which allows to track the swimmer while acquiring the images and a more realistic model of conventional active drag ones.
Particulate matter emission from the combustion of fossil fuels is a major concern due to its harmful effects on human health and impact on engine performance. Measurement of the smoke point of these fuels is a key issue in order to assess the tendency of fuels to generate particulate matter. Although certain commercial devices for measuring the smoke point are available, they are very expensive and their precision can still be improved. This paper proposes a novel low-cost device to achieve precise and repetitive smoke point measurements. It is based in an improved image processing algorithm that reduces the measurement error compared to previously developed methods. The device design allows easy adaptation to the smoke point lamp normalized in the American Society for Testing and Materials (ASTM) D1322, without any modification to the lamp.
The advent of digitization has brought about new technologies that enable advanced condition monitoring and fault diagnosis under the Industry 4.0 paradigm. While vibration signal analysis is a commonly used method for fault detection in literature, it often involves the use of expensive equipment in difficult-to-reach locations. This paper presents a solution for fault diagnosis of electrical machines by utilizing machine learning techniques on the edge, classifying information coming from motor current signature analysis (MCSA) for broken rotor bar detection. The paper covers the process of feature extraction, classification, and model training and testing for three different machine learning methods using a public dataset to then export the results to diagnose a different machine. An edge computing approach is adopted for the data acquisition, signal processing and model implementation on an affordable platform, the Arduino. This makes it accessible for small and medium-sized companies, albeit with the limitations of a resource-constrained platform. The proposed solution has been tested on electrical machines in the Mining and Industrial Engineering School of Almadén (UCLM) with positive results.
Cable-Driven Parallel Robots (CDPRs) are a special kind of parallel manipulator which use cables to control the position and orientation of the mobile platform or end-effector. The usage of cables instead of rigid links offer some advantages over their conventional rigid counterparts. As cables can only pull, but not push, the number of cables (n) required to command the end-effector is always n+1. This configuration is known as fully-constrained and it is the most extended configuration for CDPRs. Although CDPRs have many advantages, such as their ability to cover large working areas, one of their main problems is that their working area (workspace) is limited in comparison to its frame area (planar case), or frame volume (spatial case), due to the minimum and maximum allowed tensions. Depending of these tensions values the workspace can be notoriously decreased. In order to tackle this problem, lots of works focus on solving kinematics or dynamics problems for cable sagging, i.e., they take into account sagging when modelling the robot kinematic and include these poses inside the usable robot workspace. Taking into account phenomenons like this increases the mathematical complexity of the problem, and much more complex techniques are required. On the other hand, the lack of workspace problem can be tackled by adding active or passive elements to the robot design. In this sense, this paper proposes two mechanical modifications: to add passive carriages to the robot frame and to use a single cable loop to command the end-effector position and orientation. This work presents the kinematic, static and dynamic models of the novel design and shows the gain of workspace for a planar case while taking into account different parameters of the robot.
Cable-Driven Parallel Robots (CDPRs) are a special kind of parallel manipulator that uses cables to control the position and orientation of the mobile platform or end effector. The use of cables instead of rigid links offers some advantages over their conventional rigid counterparts. As cables can only pull but not push, the number of cables (n) required to command the end-effector is always n+1. This configuration is known as fully-constrained, and it is the most extended configuration for CDPRs. Although CDPRs have many advantages, such as their ability to cover large working areas, one of their main problems is that their working area (workspace) is limited in comparison to its frame area (planar case) or frame volume (spatial case), due to the minimum and maximum allowed tensions. Depending on these tension values, the workspace can notoriously decrease. In order to tackle this problem, lots of works focus on solving kinematics or dynamics problems for cable sagging, i.e., they take into account sagging when modelling the robot kinematic and include these poses inside the usable robot workspace. Taking into account phenomena such as this increases the mathematical complexity of the problem, and much more complex techniques are required. On the other hand, the lack of workspace problem can be tackled by adding active or passive elements to the robot design. In this sense, this paper proposes two mechanical modifications: to add passive carriages to the robot frame and to use a single cable loop to command the end-effector position and orientation. This work presents the kinematic, static, and dynamic models of the novel design and shows the gain of workspace for a planar case while taking into account different parameters of the robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.