An Electrochemical Scanning Tunneling Microscopy (EC-STM) study of the adsorption of adenine on Au(111) electrodes was undertaken in the pH range between 1 and 7, aiming at achieving a deeper knowledge on the structure and organization of adenine chemisorbed on gold, and at confirming previous conclusions obtained from combined electrochemical and insitu IR spectroscopy measurements. This study confirms that chemisorption of adenine induces the lifting of the Au(111) surface reconstruction. Furthermore, the 4% excess gold atoms of the reconstructed surface which are expelled during lifting of the reconstruction do not diffuse away from the reconstruction rows. We observe, in contrast, the formation of nanometric islands arranged forming chains along the directions previously followed by the reconstruction solitons. Chemisorbed adenine adlayers consist of short chains of adenine molecules roughly aligned along the three main crystallographic directions of the substrate and stabilized by stacking. These chains tend to align parallel to each other, forming very small domains and yielding an adlayer with a very short-range order. The same adlayer structure is observed at all the studied pH values. The STM results also confirm that, in very acidic media, and at low potentials, adenine adsorbs very weakly on the reconstructed Au(111) surface.
Stimulus-responsive liposomes (L) for triggering drug release to the target site are particularly useful in cancer therapy. This research was focused on the evaluation of the effects of cholesterol levels in the performance of gold nanoparticles (AuNPs)-functionalized L for controlled doxorubicin (D) delivery. Their interfacial and morphological properties, drug release behavior against temperature changes and cytotoxic activity against breast and ovarian cancer cells were studied. Langmuir isotherms were performed to identify the most stable combination of lipid components. Two mole fractions of cholesterol (3.35 mol% and 40 mol%, L1 and L2 series, respectively) were evaluated. Thin-film hydration and transmembrane pH-gradient methods were used for preparing the L and for D loading, respectively. The cationic surface of L allowed the anchoring of negatively charged AuNPs by electrostatic interactions, even inducing a shift in the zeta potential of the L2 series. L exhibited nanometric sizes and spherical shape. The higher the proportion of cholesterol, the higher the drug loading. D was released in a controlled manner by diffusion-controlled mechanisms, and the proportions of cholesterol and temperature of release media influenced its release profiles. D-encapsulated L preserved its antiproliferative activity against cancer cells. The developed liposomal formulations exhibit promising properties for cancer treatment and potential for hyperthermia therapy.
The application of Electrochemical Impedance Spectroscopy to the study of surface electrode processes is reviewed. The impedance expressions and the physical meaning of the parameters included in them are shown for three surface processes: adsorption kinetics, diffusion towards partially blocked electrodes and surface confined redox reactions. The models are applied to selected examples, showing the capability of Electrochemical Impedance Spectroscopy to obtain fundamental kinetic information of these processes. A review with 83 references.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.