In this work, carob pulp syrup was used as carbon source in C. cohnii fermentations for docosahexaenoic acid production. In preliminary experiments different carob pulp dilutions supplemented with sea salt were tested. The highest biomass productivity (4 mg/lh) and specific growth rate (0.04/h) were observed at the highest carob pulp dilution (1:10.5 (v/v), corresponding to 8.8 g/l glucose). Ammonium chloride and yeast extract were tested as nitrogen sources using different carob pulp syrup dilutions, supplemented with sea salt as growth medium. The best results were observed for yeast extract as nitrogen source. A C. cohnii fed-batch fermentation was carried out using diluted carob pulp syrup (1:10.5 v/v) supplemented with yeast extract and sea salt. The biomass productivity was 420 mg/lh, and the specific growth rate 0.05/h. Under these conditions the DHA concentration and DHA production volumetric rate attained 1.9 g/l and 18.5 mg/lh respectively after 100.4 h. The easy, clean and safe handling of carob pulp syrup makes this feedstock a promising carbon source for large-scale DHA production from C. cohnii. In this way, this carob industry by-product could be usefully disposed of through microbial production of a high value fermentation product.
Herpes-like viral infections have been reported in different bivalve mollusc species throughout the world. High mortalities among hatchery-reared larvae and juveniles of different bivalve species have been associated often with such infections. The diagnosis of herpes-like viruses in bivalve molluscs has been performed traditionally by light and transmission electron microscopy. The genome sequencing of one of these viruses, oyster herpesvirus 1 (OsHV-1), allowed the development of DNA-based diagnostic techniques. The polymerase chain reaction (PCR) has been used for the detection of OsHV-1 DNA in bivalve molluscs at different development stages. In addition, the PCR used for detection of OsHV-1 has also allowed the amplification of DNA from an OsHV-1 variant. The literature on DNA extraction methods, primers, PCR strategies, and confirmatory procedures used for the detection and identification of herpesviruses that infect bivalve molluscs are reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.