The application of se:veral ray-tracing techniques, in combination with GTDKJTD (Geometrical Theory of Diffraction/Uniform Theory of Diffraction), for an efficient analysis of propagation in urban scenarios is presented. The frequency of the analysis is in the UHF band, and a three-dimensional model of the geometry, using flat facets, is considered. After a review of the most commonly used ray-tracing techniques, a new method, called the Angular Z-Buffer (AZ13) technique, is presented. As is shown and validated with results, the AZB appears to be extremely efficient for GTDKJTD applications.
Abstract-In this paper, a ray-tracing technique to predict the propagation channel parameters in indoor scenarios is presented. It is a deterministic technique, fully three-dimensional, based on geometrical optics (GO) and the uniform theory of diffraction (UTD). A model of plane facets is used for the geometrical description of the environment. The ray tracing is accelerated considerably by using the Angular Z-Buffer algorithm. Some comparisons between predicted results and measurements are presented to validate the method.
Abstract-This work presents a new indoor localization method based on the fingerprinting technique. The proposed method uses a ray-tracing model that provides information about multipath effects. This information is stored in a dataset during the first stage of the fingerprinting method. The direction of arrival (DOA) and received signal strength (RSS) are used in the fingerprinting technique as a hybrid system. The localization estimation is calculated while taking into account the Euclidian distance between the DOA and the RSS from each unknown position and the information of the fingerprints. Numerical calculations were performed to show the mean and the standard deviation of the estimated error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.