A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD) is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100) substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells.PACS61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.)
Nanocomposites and a composite based on poly(butylene adipate-co-terephthalate) (PBAT) were synthesized using commercial copper nanoparticles (Cu-NPs), copper/cuprous oxide nanoparticles (Cu|Cu 2 O-NPs), and copper sulfate (CuSO 4 ), respectively. The Cu|Cu 2 O-NPs were synthesized using chemical reduction and characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The synthesis of Cu|Cu 2 O-NPs yielded a mixture of Cu and Cu 2 O, with metal Cu having a spherical morphology of approximately 40 nm in diameter and Cu 2 O with a diameter of 150 nm. To prepare the nanocomposites (NCs) and the composite material (MC), the NPs and the CuSO 4 salt were incorporated into the PBAT matrix in concentrations of 1, 3, and 5% p/p via an ex situ method. Fourier transform infrared spectroscopy (FTIR), a tensile test, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and agar diffusion assays were used for structural, thermomechanical, and antimicrobial characterization. Results showed that the reinforcements did not modify the chemical structure of the PBAT and only slightly increased the percentage of crystallization. The mechanical and thermal properties of the PBAT did not change much with the addition of fillers, except for a slight increase in tensile strength and thermal stability, respectively. The agar diffusion antimicrobial assays showed that the NCs and MCs had good inhibitory responses against the nonresistant strains Enterococcus faecalis , Streptococcus mutans , and Staphylococcus aureus . The MCs based on CuSO 4 had the highest biocidal effect, even against the resistant bacteria Acinetobacter baumannii . Electronic supplementary material The online version of this article (10.1186/s11671-019-2987-x) contains supplementary material, which is available to authorized users.
Silver nanowires (Ag-NWs) were obtained using microwave-assisted hydrothermal method (MAH). The main advantage of the method is its high NWs production which is greater than 90%. It is also easy, fast, and highly reproducible process. One of the drawbacks presented so far in the synthesis of nanostructures by polyol path is the high temperature used in the process, which is superior than the boiling point of solvent (ethylene glycol), and also its excessive reaction time. Here, Ag-NWs with diameters of 70 to 110 nm were synthesized in 5 min in large quantities. Results showed that dimensions and shape of nanowires were very susceptible to changes with reaction parameters. The reactor power and reactor fill capacity were important for the synthesis. It was found that the reaction time needs to be decreased because of the NWs which start to deform and break up due to significant increase in the pressure's system. Energy-dispersive X-ray spectroscopy and electron diffraction analysis (SAED) did not show corresponding phases of AgO. Some aspects about synthesis parameters which are related to the percent yield and size of nanowires are also discussed.
Mixing aqueous silver solutions with aqueous leaf aromatic plant extracts from basil, mint, marjoram and peppermint resulted in the synthesis of quasi-spherical silver nanoparticles in a range of size between 2 and 80 nm in diameter as analyzed by analytical high-resolution electron microscopy. The average size could be controlled by applying heat to the initial reaction system at different rates of heating, and by the specific botanical species employed for the reaction. Increasing the rate of heating resulted in a statistically significant decrease in the size of the nanoparticles produced, regardless of the species employed. This fact was more evident in the case of marjoram, which decreased the average diameter from 27 nm at a slow rate of heating to 8 nm at a high rate of heating. With regard to the species, minimum sizes of \10 nm were obtained with basil and peppermint, while marjoram and mint yielded an average size between 10 and 25 nm. The results indicate that aromatic plant extracts can be used to achieve the controlled synthesis of metal nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.