See Mormann and Andrzejak (doi:) for a scientific commentary on this article. Seizures are thought to arise from an identifiable pre-ictal state. Brinkmann et al. report the results of an online, open-access seizure forecasting competition using intracranial EEG recordings from canines with naturally occurring epilepsy and human patients undergoing presurgical monitoring. The winning algorithms forecast seizures at rates significantly greater than chance.
This paper proposes the use of hybrid Hidden Markov Model (HMM)/Artificial Neural Network (ANN) models for recognizing unconstrained offline handwritten texts. The structural part of the optical models has been modeled with Markov chains, and a Multilayer Perceptron is used to estimate the emission probabilities. This paper also presents new techniques to remove slope and slant from handwritten text and to normalize the size of text images with supervised learning methods. Slope correction and size normalization are achieved by classifying local extrema of text contours with Multilayer Perceptrons. Slant is also removed in a nonuniform way by using Artificial Neural Networks. Experiments have been conducted on offline handwritten text lines from the IAM database, and the recognition rates achieved, in comparison to the ones reported in the literature, are among the best for the same task.
Abstract:The small medium large system (SMLsystem) is a house built at the Universidad CEU Cardenal Herrera (CEU-UCH) for participation in the Solar Decathlon 2013 competition. Several technologies have been integrated to reduce power consumption. One of these is a forecasting system based on artificial neural networks (ANNs), which is able to predict indoor temperature in the near future using captured data by a complex monitoring system as the input. A study of the impact on forecasting performance of different covariate combinations is presented in this paper. Additionally, a comparison of ANNs with the standard statistical forecasting methods is shown. The research in this paper has been focused on forecasting the indoor temperature of a house, as it is directly related to HVAC-heating, ventilation and air conditioning-system consumption. HVAC systems at the SMLsystem house represent 53.89% of the overall power consumption. The energy used to maintain temperature was measured to be 30%-38.9% of the energy needed to lower it. Hence, these forecasting measures allow the house to adapt itself to future temperature conditions by using home automation in an energy-efficient manner. Experimental results show a high forecasting accuracy and therefore, they might be used to efficiently control an HVAC system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.