This paper proposes the use of hybrid Hidden Markov Model (HMM)/Artificial Neural Network (ANN) models for recognizing unconstrained offline handwritten texts. The structural part of the optical models has been modeled with Markov chains, and a Multilayer Perceptron is used to estimate the emission probabilities. This paper also presents new techniques to remove slope and slant from handwritten text and to normalize the size of text images with supervised learning methods. Slope correction and size normalization are achieved by classifying local extrema of text contours with Multilayer Perceptrons. Slant is also removed in a nonuniform way by using Artificial Neural Networks. Experiments have been conducted on offline handwritten text lines from the IAM database, and the recognition rates achieved, in comparison to the ones reported in the literature, are among the best for the same task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.