We report on high-resolution potential imaging of heterogeneous surfaces by means of Kelvin probe force microscopy, working in frequency modulation mode ͑FM-KPFM͒, performed in ultrahigh vacuum. To study the limits of potential and lateral resolutions in FM-KPFM, we have investigated clean surface of compound semiconductor InSb͑001͒ and the same surface with some submonolayer coverages of KBr and Au. It was found that long-and short-range bias-dependent interactions, acting between the tip and the surface, could be detected and that both interactions contribute to the measured contact potential difference ͑CPD͒ signal. On the one hand, when only the long-range electrostatic interactions between the tip and the surface are active, the CPD map provides the distribution of the local surface potential on the imaged sample with the lateral resolution and the correctness of the measured values depending on the measurement conditions. For this case, the experimental findings were compared with the predictions of theoretical calculations based on a realistic model for the cantilever-sample geometry. On the other hand, when the short-range and bias-dependent interactions are detected, FM-KPFM provides even the sub-nanometer contrast in the CPD signal. In this situation, however, the measured CPD signal is not related to the sample surface potential but reflects the properties of the front tip atom-surface atom interactions.
Atomically precise dangling-bond (DB) lines are constructed dimer-by-dimer on a hydrogen-passivated Ge( 001)-( 2×1):H surface by an efficient scanning tunneling microscope (STM) tip-induced desorption protocol. Due to the smaller surface band gap of the undoped Ge(001) substrate compared to Si(001), states associated with individually created DBs can be characterized spectroscopically by scanning tunneling spectroscopy (STS). Corresponding dI /dV spectra corroborated by first-principle modeling demonstrate that DB dimers introduce states below the Ge(001):H surface conduction band edge. For a DB line parallel to the surface reconstruction rows, the DB-derived states near the conduction band edge shift to lower energies with increasing number of DBs. The coupling between the DB states results in a dispersive band spanning 0.7 eV for an infinite DB line. For a long DB line perpendicular to the surface reconstruction rows, a similar band is not formed since the interdimer coupling is weak. However, for a short DB line (2-3 DBs) perpendicular to the reconstruction rows a significant shift is still observed due to the more flexible dimer buckling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.