According to the demographic evolution in industrialized countries, more and more elderly people will experience falls at home and will require emergency services. The main problem comes from fall-prone elderly living alone at home. To resolve this lack of safety, we propose a new method to detect falls at home, based on a multiple-cameras network for reconstructing the 3-D shape of people. Fall events are detected by analyzing the volume distribution along the vertical axis, and an alarm is triggered when the major part of this distribution is abnormally near the floor during a predefined period of time, which implies that a person has fallen on the floor. This method was validated with videos of a healthy subject who performed 24 realistic scenarios showing 22 fall events and 24 cofounding events (11 crouching position, 9 sitting position, and 4 lying on a sofa position) under several camera configurations, and achieved 99.7% sensitivity and specificity or better with four cameras or more. A real-time implementation using a graphic processing unit (GPU) reached 10 frames per second (fps) with 8 cameras, and 16 fps with 3 cameras.
Evaluating potential musculoskeletal disorders risks in real workstations is challenging as the environment is cluttered, which makes it difficult to accurately assess workers' postures. Being marker-free and calibration-free, Microsoft Kinect is a promising device although it may be sensitive to occlusions. We propose and evaluate a RULA ergonomic assessment in real work conditions using recently published occlusion-resistant Kinect skeleton data correction. First, we compared postures estimated with this method to ground-truth data, in standardized laboratory conditions. Second, we compared RULA scores to those provided by two professional experts, in a non-laboratory cluttered workplace condition. The results show that the corrected Kinect data can provide more accurate RULA grand scores, even under sub-optimal conditions induced by the workplace environment. This study opens new perspectives in musculoskeletal risk assessment as it provides the ergonomists with 30 Hz continuous information that could be analyzed offline and in a real-time framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.