Evaluating potential musculoskeletal disorders risks in real workstations is challenging as the environment is cluttered, which makes it difficult to accurately assess workers' postures. Being marker-free and calibration-free, Microsoft Kinect is a promising device although it may be sensitive to occlusions. We propose and evaluate a RULA ergonomic assessment in real work conditions using recently published occlusion-resistant Kinect skeleton data correction. First, we compared postures estimated with this method to ground-truth data, in standardized laboratory conditions. Second, we compared RULA scores to those provided by two professional experts, in a non-laboratory cluttered workplace condition. The results show that the corrected Kinect data can provide more accurate RULA grand scores, even under sub-optimal conditions induced by the workplace environment. This study opens new perspectives in musculoskeletal risk assessment as it provides the ergonomists with 30 Hz continuous information that could be analyzed offline and in a real-time framework.
Analyzing human poses with a Kinect is a promising method to evaluate potentials risks of musculoskeletal disorders at workstations. In ecological situations, complex 3D poses and constraints imposed by the environment make it difficult to obtain reliable kinematic information. Thus, being able to predict the potential accuracy of the measurement for such complex 3D poses and sensor placements is challenging in classical experimental setups. To tackle this problem, we propose a new evaluation method based on a virtual mannequin. In this study, we apply this method to the evaluation of joint positions (shoulder, elbow, and wrist), joint angles (shoulder and elbow), and the corresponding RULA (a popular ergonomics assessment grid) upper-limb score for a large set of poses and sensor placements. Thanks to this evaluation method, more than 500,000 configurations have been automatically tested, which would be almost impossible to evaluate with classical protocols. The results show that the kinematic information obtained by the Kinect software is generally accurate enough to fill in ergonomic assessment grids. However inaccuracy strongly increases for some specific poses and sensor positions. Using this evaluation method enabled us to report configurations that could lead to these high inaccuracies. As a supplementary material, we provide a software tool to help designers to evaluate the expected accuracy of this sensor for a set of upper-limb configurations. Results obtained with the virtual mannequin are in accordance with those obtained from a real subject for a limited set of poses and sensor placements.
Being marker-free and calibration free, Microsoft Kinect is nowadays widely used in many motion-based applications, such as user training for complex industrial tasks and ergonomics pose evaluation. The major problem of Kinect is the placement requirement to obtain accurate poses, as well as its weakness against occlusions. To improve the robustness of Kinect in interactive motion-based applications, real-time data-driven pose reconstruction has been proposed. The idea is to utilize a database of accurately captured human poses as a prior to optimize the Kinect recognized ones, in order to estimate the true poses performed by the user. The key research problem is to identify the most relevant poses in the database for accurate and efficient reconstruction. In this paper, we propose a new pose reconstruction method based on modelling the pose database with a structure called Filtered Pose Graph, which indicates the intrinsic correspondence between poses. Such a graph not only speeds up the database poses selection process, but also improves the relevance of the selected poses for higher quality reconstruction. We apply the proposed method in a challenging environment of industrial context that involves sub-optimal Kinect placement and a large amount of occlusion. Experimental results show that our real-time system reconstructs Kinect poses more accurately than existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.