We demonstrate an all-fiber supercontinuum source that generates a continuous spectrum from 1.6 μm to >11 μm with 417 mW on-time average power at 33% duty cycle. By utilizing a master oscillator power amplifier pump with three amplification stages and concatenating solid core ZBLAN, arsenic sulfide, and arsenic selenide fibers, we shift 1550 nm light to ∼4.5 μm, ∼6.5 μm, and >11 μm, respectively. With 69 mW past 7.5 μm, this source provides both high power and broad spectral expansion, while outputting a single fundamental mode.
Nanoelectrospray laser deposition (NELD) of nanoparticles (NPs) on various substrates has attracted considerable attention as a fast, cost-effective, and scalable technique for precise control of heating time and zone. In this work, NELD-assisted sintering of titanium dioxide (TiO2) NPs on borosilicate glass and quartz substrates is addressed. A [Formula: see text] CO2 laser was used for patterning and sintering titania nanoparticles in ambient air. The effects of laser dose and deposition process parameters on the morphological, structural, and optical characteristics of the sintered TiO2 patterns were characterized using optical microscopy, scanning electron microscopy, and x-ray diffraction. The results point out that the anatase phase was preserved after laser sintering, without the appearance of any TiO2 rutile traces. We show that the improvement in the morphological properties of TiO2 patterns is due to the laser sintering of a dense layer of ceramic with enhanced interconnectivity and connection between single nanoparticles. A theoretical model was developed to select the temperature required to sinter TiO2 nanoparticles and to correlate it with the laser power and scanning speed to prevent cracking on the substrate and sintered nanoparticles and also to get transparent TiO2 films. An optical transmittance of [Formula: see text] was achieved. The experimental data were in accordance with the theoretical model, predicting the success of the model.
We find conditions for suppression of higher-order core modes in chalcogenide negative curvature fibers with an air core. An avoided crossing between the higher-order core modes and the fundamental modes in the tubes surrounding the core can be used to resonantly couple these modes, so that the higher-order core modes become lossy. In the parameter range of the avoided crossing, the higher-order core modes become hybrid modes that reside partly in the core and partly in the tubes. The loss ratio of the higher-order core modes to the fundamental core mode can be more than 50, while the leakage loss of the fundamental core mode is under 0.4 dB/m. We show that this loss ratio is almost unchanged when the core diameter changes and so will remain large in the presence of fluctuations that are due to the fiber drawing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.