Abstract. Mean age of stratospheric air can be derived from observations of sufficiently long-lived trace gases with approximately linear trends in the troposphere. Mean age can serve as a tracer to investigate stratospheric transport and long-term changes in the strength of the overturning BrewerDobson circulation of the stratosphere. For this purpose, a low-cost method is required in order to allow for regular observations up to altitudes of about 30 km. Despite the desired low costs, high precision and accuracy are required in order to determine mean age. We present balloonborne AirCore observations from two midlatitude sites: Timmins in Ontario/Canada and Lindenberg in Germany. During the Timmins campaign, five AirCores sampled air in parallel with a large stratospheric balloon and were analysed for CO 2 , CH 4 and partly CO. We show that there is good agreement between the different AirCores (better than 0.1 %), especially when vertical gradients are small. The measurements from Lindenberg were performed using small low-cost balloons and yielded very comparable results. We have used the observations to extend our long-term data set of mean age observations at Northern Hemisphere midlatitudes. The time series now covers more than 40 years and shows a small, statistically non-significant positive trend of 0.15 ± 0.18 years decade −1 . This trend is slightly smaller than the previous estimate of 0.24 ± 0.22 years decade −1 which was based on observations up to the year 2006. These observations are still in contrast to strong negative trends of mean age as derived from some model calculations.
Abstract. An original and innovative sampling system called AirCore was presented by NOAA in 2010 (Karion et al., 2010). It consists of a long ( > 100 m) and narrow (< 1 cm) stainless steel tube that can retain a profile of atmospheric air. The captured air sample has then to be analyzed with a gas analyzer for trace mole fraction. In this study, we introduce a new AirCore aiming to improve resolution along the vertical with the objectives to (i) better capture the vertical distribution of CO 2 and CH 4 , (ii) provide a tool to compare AirCores and validate the estimated vertical resolution achieved by AirCores. This (high-resolution) AirCore-HR consists of a 300 m tube, combining 200 m of 0.125 in. (3.175 mm) tube and a 100 m of 0.25 in. (6.35 mm) tube. This new configuration allows us to achieve a vertical resolution of 300 m up to 15 km and better than 500 m up to 22 km (if analysis of the retained sample is performed within 3 h). The AirCore-HR was flown for the first time during the annual StratoScience campaign from CNES in August 2014 from Timmins (Ontario, Canada). High-resolution vertical profiles of CO 2 and CH 4 up to 25 km were successfully retrieved. These profiles revealed well-defined transport structures in the troposphere (also seen in CAMS-ECMWF high-resolution forecasts of CO 2 and CH 4 profiles) and captured the decrease of CO 2 and CH 4 in the stratosphere. The multi-instrument gondola also carried two other low-resolution AirCore-GUF that al-
Abstract. An original and innovative sampling system called AirCore was presented by NOAA in 2010 (Karion et al., 2010). It consists of a long (> 100 m) and narrow (< 1 cm) stainless steel tube that can retain a profile of atmospheric air. The captured air sample has then to be analyzed with a gas analyzer for trace mole fraction. In this study, we introduce a new AirCore aiming at improved resolution along the vertical with the objectives to: (i) better capture the vertical distribution of CO2 and CH4, (ii) provide a tool to compare AirCores and validate the estimated vertical resolution achieved by AirCores. This AirCore-HR (high resolution) consists of a 300 m tube, combining 200 m of 1/8 in. (3.175 mm) tube and a 100 m of 1/4 in. (6.35 mm) tube. This new configuration allows to achieve a vertical resolution of 300 m up to 15 km and better than 500 m up to 22 km (if analysis of the retained sample is performed within 3 hours). The AirCore-HR was flown for the first time during the annual StratoScience campaign from CNES in August 2014 from Timmins (Ontario, Canada). High-resolution vertical profiles of CO2 and CH4 up to 25 km were successfully retrieved. These profiles revealed well defined transport structures in the troposphere (also seen in CAMS-ECMWF high resolution forecasts of CO2 and CH4 profiles) and captured the decrease of CO2 and CH4 in the stratosphere. The multi-instruments gondola from the flight carried two other low-resolution AirCore-GUF that allowed to perform direct comparisons and study the underlying processing method used to convert the sample of air to greenhouse gases vertical profiles. In particular, degrading the AirCore-HR derived profiles to the low resolution of AirCore-GUF yields an excellent match between both sets of CH4 profiles, and shows a good consistency between vertical structures of CO2 and CH4. These results fully validate the theoretical vertical resolution achievable by AirCores. Finally, the uncertainties associated with the measurements are assessed, yielding an average uncertainty below 3 ppb for CH4 and 0.25 ppm for CO2 with the major source of uncertainty coming from the potential loss of air sample on the ground and the choice of the starting and ending point of the collected air sample inside the tube. In an ideal case where the sample would be fully retained, it would be possible to know precisely the pressure at which air was sampled last and thus to improve the overall uncertainty to about 0.1 ppm for CO2 and 2 ppb for CH4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.