The standard assumption for proving linear convergence of first order methods for smooth convex optimization is the strong convexity of the objective function, an assumption which does not hold for many practical applications. In this paper, we derive linear convergence rates of several first order methods for solving smooth non-strongly convex constrained optimization problems, i.e. involving an objective function with a Lipschitz continuous gradient that satisfies some relaxed strong convexity condition. In particular, in the case of smooth constrained convex optimization, we provide several relaxations of the strong convexity conditions and prove that they are sufficient for getting linear convergence for several first order methods such as projected gradient, fast gradient and feasible descent methods. We also provide examples of functional classes that satisfy our proposed relaxations of strong convexity conditions. Finally, we show that the proposed relaxed strong convexity conditions cover important applications ranging from solving linear systems, Linear Programming, and dual formulations of linearly constrained convex problems. IntroductionRecently, there emerges a surge of interests in accelerating first order methods for difficult optimization problems, for example the ones without strong convex objective function, arising in different applications such as data analysis [6] or machine learning [9]. Algorithms based on gradient information have proved to be effective in these settings, such as projected gradient and its fast variants [11], stochastic gradient descent [12] or coordinate gradient descent [18].
We show that the exact worst-case performance of fixed-step first-order methods for unconstrained optimization of smooth (possibly strongly) convex functions can be obtained by solving convex programs.Finding the worst-case performance of a black-box first-order method is formulated as an optimization problem over a set of smooth (strongly) convex functions and initial conditions. We develop closed-form necessary and sufficient conditions for smooth (strongly) convex interpolation, which provide a finite representation for those functions. This allows us to reformulate the worst-case performance estimation problem as an equivalent finite dimension-independent semidefinite optimization problem, whose exact solution can be recovered up to numerical precision. Optimal solutions to this performance estimation problem provide both worst-case performance bounds and explicit functions matching them, as our smooth (strongly) convex interpolation procedure is constructive.Our works build on those of Drori and Teboulle in [Math. Prog. 145 (1-2), 2014] who introduced and solved relaxations of the performance estimation problem for smooth convex functions.We apply our approach to different fixed-step first-order methods with several performance criteria, including objective function accuracy and gradient norm. We conjecture several numerically supported worstcase bounds on the performance of the fixed-step gradient, fast gradient and optimized gradient methods, both in the smooth convex and the smooth strongly convex cases, and deduce tight estimates of the optimal step size for the gradient method.
Nonnegative matrix factorization (NMF) is a data analysis technique used in a great variety of applications such as text mining, image processing, hyperspectral data analysis, computational biology, and clustering. In this letter, we consider two well-known algorithms designed to solve NMF problems: the multiplicative updates of Lee and Seung and the hierarchical alternating least squares of Cichocki et al. We propose a simple way to significantly accelerate these schemes, based on a careful analysis of the computational cost needed at each iteration, while preserving their convergence properties. This acceleration technique can also be applied to other algorithms, which we illustrate on the projected gradient method of Lin. The efficiency of the accelerated algorithms is empirically demonstrated on image and text data sets and compares favorably with a state-of-the-art alternating nonnegative least squares algorithm.
We provide a framework for computing the exact worst-case performance of any algorithm belonging to a broad class of oracle-based first-order methods for composite convex optimization, including those performing explicit, projected, proximal, conditional and inexact (sub)gradient steps. We simultaneously obtain tight worst-case guarantees and explicit instances of optimization problems on which the algorithm reaches this worst-case. We achieve this by reducing the computation of the worst-case to solving a convex semidefinite program, generalizing previous works on performance estimation by Drori and Teboulle [13] and the authors [43].We use these developments to obtain a tighter analysis of the proximal point algorithm and of several variants of fast proximal gradient, conditional gradient, subgradient and alternating projection methods. In particular, we present a new analytical worst-case guarantee for the proximal point algorithm that is twice better than previously known, and improve the standard worst-case guarantee for the conditional gradient method by more than a factor of two.We also show how the optimized gradient method proposed by Kim and Fessler in [22] can be extended by incorporating a projection or a proximal operator, which leads to an algorithm that converges in the worst-case twice as fast as the standard accelerated proximal gradient method [2].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.