We report the experimental observation of stable pulse pairs with a +/-pi/2 phase difference in a passively mode-locked stretched-pulse fiber ring laser. In our setup the stabilization of interacting subpicosecond pulses is obtained with a large range of pulse separations, namely, from 2.7 to 10 ps, without the need for external control.
In a passively mode-locked fiber ring laser, we report the experimental observation of relative phase locking of pulses in a wide variety of cases. Relative phase locking is observed in bunches of N pulses separated by more than 20 pulse widths as well as in close pulse pairs. In the latter case, the phase relationship between the two pulses is measured to be Ϯ/2, which is related to theoretical predictions formerly obtained from a Ginzburg-Landau distributed model. We have developed a simplified numerical model adapted to our laser, which keeps its essential features while significantly reducing the number of free parameters. The agreement with the experiment is excellent.
We theoretically and experimentally study the noise of a class-A dual-frequency vertical external cavity surface emitting laser operating at Cesium clock wavelength. The intensity noises of the two orthogonally polarized modes and the phase noise of their beatnote are investigated. The intensity noises of the two modes and their correlations are well predicted by a theory based on coupled rate equations. The phase noise of the beatnote is well described by considering both thermal effects and the effect of phase-amplitude coupling. The good agreement between theory and experiment indicates possible ways to further decrease the laser noises.
We report a fully-correlated multi-mode pumping architecture optimized for dramatic noise reduction of a class-A dual-frequency Vertical External Cavity Surface Emitting Laser (VECSEL). Thanks to amplitude division of a laser diode, the two orthogonally polarized modes emitted by the VECSEL oscillating at 852 nm are separately pumped by two beams exhibiting fully in-phase correlated intensity noises. This is shown to lead to very strong and in-phase correlations between the two lasing modes intensities. As a result, the phase noise power spectral density of the RF beat note generated by the two modes undergoes a drastic reduction of about 10 to 20 dB throughout the whole frequency range from 10 kHz to 20 MHz and falls below the detection floor above a few MHz. A good agreement is found with a model which uses the framework of rate equations coupled by cross-saturation. The remaining phase noise is attributed to thermal effects and additional technical noises and lies mainly within the bandwidth of a phase-locked-loop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.