Aims Media reports suggest increasing popularity of marijuana concentrates (“dabs”; “earwax”; “budder”; “shatter; “butane hash oil”) that are typically vaporized and inhaled via a bong, vaporizer or electronic cigarette. However, data on the epidemiology of marijuana concentrate use remain limited. This study aims to explore Twitter data on marijuana concentrate use in the U.S. and identify differences across regions of the country with varying cannabis legalization policies. Methods Tweets were collected between October 20 and December 20, 2014, using Twitter's streaming API. Twitter data filtering framework was available through the eDrugTrends platform. Raw and adjusted percentages of dabs-related tweets per state were calculated. A permutation test was used to examine differences in the adjusted percentages of dabs-related tweets among U.S. states with different cannabis legalization policies. Results eDrugTrends collected a total of 125,255 tweets. Almost 22% (n=27,018) of these tweets contained identifiable state-level geolocation information. Dabs-related tweet volume for each state was adjusted using a general sample of tweets to account for different levels of overall tweeting activity for each state. Adjusted percentages of dabs-related tweets were highest in states that allowed recreational and/or medicinal cannabis use and lowest in states that have not passed medical cannabis use laws. The differences were statistically significant. Conclusions Twitter data suggest greater popularity of dabs in the states that legalized recreational and/or medical use of cannabis. The study provides new information on the epidemiology of marijuana concentrate use and contributes to the emerging field of social media analysis for drug abuse research.
Aims Several states in the U.S. have legalized cannabis for recreational or medical uses. In this context, cannabis edibles have drawn considerable attention after adverse effects were reported. This paper investigates Twitter users’ perceptions concerning edibles and evaluates the association edibles-related tweeting activity and local cannabis legislation. Methods Tweets were collected between May 1 and July 31, 2015, using Twitter API and filtered through the eDrugTrends/Twitris platform. A random sample of geolocated tweets was manually coded to evaluate Twitter users’ perceptions regarding edibles. Raw state proportions of Twitter users mentioning edibles were ajusted relative to the total number of Twitter users per state. Differences in adjusted proportions of Twitter users mentioning edibles between states with different cannabis legislation status were assesed via a permutation test. Results We collected 100,182 tweets mentioning cannabis edibles with 26.9% (n=26,975) containing state-level geolocation. Adjusted percentages of geolocated Twitter users posting about edibles were significantly greater in states that allow recreational and/or medical use of cannabis. The differences were statistically significant. Overall, cannabis edibles were generally positively perceived among Twitter users despite some negative tweets expressing the unreliability of edible consumption linked to variability in effect intensity and duration. Conclusion Our findings suggest that Twitter data analysis is an important tool for epidemiological monitoring of emerging drug use practices and trends. Results tend to indicate greater tweeting activity about cannabis edibles in states where medical THC and/or recreational use are legal. Although the majority of tweets conveyed positive attitudes about cannabis edibles, analysis of experiences expressed in negative tweets confirms the potential adverse effects of edibles and calls for educating edibles-naïve users, improving edibles labeling, and testing their THC content.
BackgroundTo harness the full potential of social media for epidemiological surveillance of drug abuse trends, the field needs a greater level of automation in processing and analyzing social media content.ObjectivesThe objective of the study is to describe the development of supervised machine-learning techniques for the eDrugTrends platform to automatically classify tweets by type/source of communication (personal, official/media, retail) and sentiment (positive, negative, neutral) expressed in cannabis- and synthetic cannabinoid–related tweets.MethodsTweets were collected using Twitter streaming Application Programming Interface and filtered through the eDrugTrends platform using keywords related to cannabis, marijuana edibles, marijuana concentrates, and synthetic cannabinoids. After creating coding rules and assessing intercoder reliability, a manually labeled data set (N=4000) was developed by coding several batches of randomly selected subsets of tweets extracted from the pool of 15,623,869 collected by eDrugTrends (May-November 2015). Out of 4000 tweets, 25% (1000/4000) were used to build source classifiers and 75% (3000/4000) were used for sentiment classifiers. Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machines (SVM) were used to train the classifiers. Source classification (n=1000) tested Approach 1 that used short URLs, and Approach 2 where URLs were expanded and included into the bag-of-words analysis. For sentiment classification, Approach 1 used all tweets, regardless of their source/type (n=3000), while Approach 2 applied sentiment classification to personal communication tweets only (2633/3000, 88%). Multiclass and binary classification tasks were examined, and machine-learning sentiment classifier performance was compared with Valence Aware Dictionary for sEntiment Reasoning (VADER), a lexicon and rule-based method. The performance of each classifier was assessed using 5-fold cross validation that calculated average F-scores. One-tailed t test was used to determine if differences in F-scores were statistically significant.ResultsIn multiclass source classification, the use of expanded URLs did not contribute to significant improvement in classifier performance (0.7972 vs 0.8102 for SVM, P=.19). In binary classification, the identification of all source categories improved significantly when unshortened URLs were used, with personal communication tweets benefiting the most (0.8736 vs 0.8200, P<.001). In multiclass sentiment classification Approach 1, SVM (0.6723) performed similarly to NB (0.6683) and LR (0.6703). In Approach 2, SVM (0.7062) did not differ from NB (0.6980, P=.13) or LR (F=0.6931, P=.05), but it was over 40% more accurate than VADER (F=0.5030, P<.001). In multiclass task, improvements in sentiment classification (Approach 2 vs Approach 1) did not reach statistical significance (eg, SVM: 0.7062 vs 0.6723, P=.052). In binary sentiment classification (positive vs negative), Approach 2 (focus on personal communication tweets only) improved classification results, ...
Aims The study seeks to characterize marijuana concentrate users, describe reasons and patterns of use, perceived risk, and identify predictors of daily/near daily use. Methods An anonymous web-based survey was conducted (April-June 2016) with 673 US-based cannabis users recruited via the Bluelight.org web-forum and included questions about marijuana concentrate use, other drugs, and socio-demographics. Multivariable logistic regression analyses were conducted to identify characteristics associated with greater odds of lifetime and daily use of marijuana concentrates. Results About 66% of respondents reported marijuana concentrate use. The sample was 76% male, and 87% white. Marijuana concentrate use was viewed as riskier than flower cannabis. Greater odds of marijuana concentrate use was associated with living in states with “recreational” (AOR=4.91; p=0.001) or “medical, less restrictive” marijuana policies (AOR=1.87; p=0.014), being male (AOR=2.21, p=0.002), younger (AOR=0.95, p<0.001), number of other drugs used (AOR=1.23, p<0.001), daily herbal cannabis use (AOR=4.28, p<0.001), and lower perceived risk of cannabis use (AOR=0.96, p=0.043). About 13% of marijuana concentrate users reported daily/near daily use. Greater odds of daily concentrate use was associated with being male (AOR=9.29, p=0.033), using concentrates for therapeutic purposes (AOR=7.61, p=0.001), using vape pens for marijuana concentrate administration (AOR=4.58, p=0.007), and lower perceived risk of marijuana concentrate use (AOR=0.92, p=0.017). Conclusions Marijuana concentrate use was more common among male, younger and more experienced users, and those living in states with more liberal marijuana policies. Characteristics of daily users, in particular patterns of therapeutic use and utilization of different vaporization devices, warrant further research with community-recruited samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.