Background Increases in illicit pharmaceutical opioid (PO) use have been associated with risk for transition to heroin use. We identify predictors of transition to heroin use among young, illicit PO users with no history of opioid dependence or heroin use at baseline. Methods Respondent-driven sampling recruited 383 participants; 362 returned for at least one biannual structured interview over 36 months. Cox regression was used to test for associations between lagged predictors and hazard of transition to heroin use. Potential predictors were based on those suggested in the literature. We also computed population attributable risk (PAR) and the rate of heroin transition. Results Over 36 months, 27 (7.5%) participants initiated heroin use; all were white, and the rate of heroin initiation was 2.8% per year (95% CI=1.9%–4.1%). Mean length of PO at first reported heroin use was 6.2 years (SD=1.9). Lifetime PO dependence (AHR=2.39, 95% CI= 1.07–5.48; PAR=32%, 95% CI=−2%–64%), early age of PO initiation (AHR=3.08, 95%; CI= 1.26–7.47; PAR=30%, 95% CI=2%–59%), using illicit POs to get high but not to self-medicate a health problem (AHR=4.83, 95% CI= 2.11–11.0; PAR=38%, 95% CI=12%–65%), and ever using PO non-orally most often (AHR=6.57, 95% CI=2.81–17.2; PAR=63%, 95% CI=31%–86%) were significant predictors. Conclusion This is one of the first prospective studies to test observations from previous cross-sectional and retrospective research on the relationship between illicit PO use and heroin initiation among young, initially non-opioid dependent PO users. The results provide insights into targets for the design of urgently needed prevention interventions.
Objectives The role of social media in biomedical knowledge mining, including clinical, medical and healthcare informatics, prescription drug abuse epidemiology and drug pharmacology, has become increasingly significant in recent years. Social media offers opportunities for people to share opinions and experiences freely in online communities, which may contribute information beyond the knowledge of domain professionals. This paper describes the development of a novel Semantic Web platform called PREDOSE (PREscription Drug abuse Online Surveillance and Epidemiology), which is designed to facilitate the epidemiologic study of prescription (and related) drug abuse practices using social media. PREDOSE uses web forum posts and domain knowledge, modeled in a manually created Drug Abuse Ontology (DAO) (pronounced dow), to facilitate the extraction of semantic information from User Generated Content (UGC). A combination of lexical, pattern-based and semantics-based techniques is used together with the domain knowledge to extract fine-grained semantic information from UGC. In a previous study, PREDOSE was used to obtain the datasets from which new knowledge in drug abuse research was derived. Here, we report on various platform enhancements, including an updated DAO, new components for relationship and triple extraction, and tools for content analysis, trend detection and emerging patterns exploration, which enhance the capabilities of the PREDOSE platform. Given these enhancements, PREDOSE is now more equipped to impact drug abuse research by alleviating traditional labor-intensive content analysis tasks. Methods Using custom web crawlers that scrape UGC from publicly available web forums, PREDOSE first automates the collection of web-based social media content for subsequent semantic annotation. The annotation scheme is modeled in the DAO, and includes domain specific knowledge such as prescription (and related) drugs, methods of preparation, side effects, routes of administration, etc. The DAO is also used to help recognize three types of data, namely: 1) entities, 2) relationships and 3) triples. PREDOSE then uses a combination of lexical and semantic-based techniques to extract entities and relationships from the scraped content, and a top-down approach for triple extraction that uses patterns expressed in the DAO. In addition, PREDOSE uses publicly available lexicons to identify initial sentiment expressions in text, and then a probabilistic optimization algorithm (from related research) to extract the final sentiment expressions. Together, these techniques enable the capture of fine-grained semantic information from UGC, and querying, search, trend analysis and overall content analysis of social media related to prescription drug abuse. Moreover, extracted data are also made available to domain experts for the creation of training and test sets for use in evaluation and refinements in information extraction techniques. Results A recent evaluation of the information extraction techniques applied in the PREDO...
Aims Media reports suggest increasing popularity of marijuana concentrates (“dabs”; “earwax”; “budder”; “shatter; “butane hash oil”) that are typically vaporized and inhaled via a bong, vaporizer or electronic cigarette. However, data on the epidemiology of marijuana concentrate use remain limited. This study aims to explore Twitter data on marijuana concentrate use in the U.S. and identify differences across regions of the country with varying cannabis legalization policies. Methods Tweets were collected between October 20 and December 20, 2014, using Twitter's streaming API. Twitter data filtering framework was available through the eDrugTrends platform. Raw and adjusted percentages of dabs-related tweets per state were calculated. A permutation test was used to examine differences in the adjusted percentages of dabs-related tweets among U.S. states with different cannabis legalization policies. Results eDrugTrends collected a total of 125,255 tweets. Almost 22% (n=27,018) of these tweets contained identifiable state-level geolocation information. Dabs-related tweet volume for each state was adjusted using a general sample of tweets to account for different levels of overall tweeting activity for each state. Adjusted percentages of dabs-related tweets were highest in states that allowed recreational and/or medicinal cannabis use and lowest in states that have not passed medical cannabis use laws. The differences were statistically significant. Conclusions Twitter data suggest greater popularity of dabs in the states that legalized recreational and/or medical use of cannabis. The study provides new information on the epidemiology of marijuana concentrate use and contributes to the emerging field of social media analysis for drug abuse research.
Aims Many websites provide a means for individuals to share their experiences and knowledge about different drugs. Such User-Generated Content (UGC) can be a rich data source to study emerging drug use practices and trends. This study examined UGC on extra-medical use of loperamide among illicit opioid users. Methods A website that allows for the free discussion of illicit drugs and is accessible for public viewing was selected for analysis. Web-forum posts were retrieved using web crawlers and retained in a local text database. The database was queried to extract posts with a mention of loperamide and relevant brand/slang terms. Over 1,290 posts were identified. A random sample of 258 posts was coded using NVivo to identify intent, dosage, and side-effects of loperamide use. Results There has been an increase in discussions related to loperamide’s use by non-medical opioid users, especially in 2010–2011. Loperamide was primarily discussed as a remedy to alleviate a broad range of opioid withdrawal symptoms, and was sometimes referred to as “poor man’s” methadone. Typical doses ranged 70–100 mg per day, much higher than an indicated daily dose of 16 mg. Conclusions This study suggests that loperamide is being used extra-medically to self-treat opioid withdrawal symptoms. There is a growing demand among people who are opioid dependent for drugs to control withdrawal symptoms, and loperamide appears to fit that role. The study also highlights the potential of the Web as a “leading edge” data source in identifying emerging drug use practices.
Aims Several states in the U.S. have legalized cannabis for recreational or medical uses. In this context, cannabis edibles have drawn considerable attention after adverse effects were reported. This paper investigates Twitter users’ perceptions concerning edibles and evaluates the association edibles-related tweeting activity and local cannabis legislation. Methods Tweets were collected between May 1 and July 31, 2015, using Twitter API and filtered through the eDrugTrends/Twitris platform. A random sample of geolocated tweets was manually coded to evaluate Twitter users’ perceptions regarding edibles. Raw state proportions of Twitter users mentioning edibles were ajusted relative to the total number of Twitter users per state. Differences in adjusted proportions of Twitter users mentioning edibles between states with different cannabis legislation status were assesed via a permutation test. Results We collected 100,182 tweets mentioning cannabis edibles with 26.9% (n=26,975) containing state-level geolocation. Adjusted percentages of geolocated Twitter users posting about edibles were significantly greater in states that allow recreational and/or medical use of cannabis. The differences were statistically significant. Overall, cannabis edibles were generally positively perceived among Twitter users despite some negative tweets expressing the unreliability of edible consumption linked to variability in effect intensity and duration. Conclusion Our findings suggest that Twitter data analysis is an important tool for epidemiological monitoring of emerging drug use practices and trends. Results tend to indicate greater tweeting activity about cannabis edibles in states where medical THC and/or recreational use are legal. Although the majority of tweets conveyed positive attitudes about cannabis edibles, analysis of experiences expressed in negative tweets confirms the potential adverse effects of edibles and calls for educating edibles-naïve users, improving edibles labeling, and testing their THC content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.