We propose a multilingual method for the extraction of biased sentences from Wikipedia, and use it to create corpora in Bulgarian, French and English. Sifting through the revision history of the articles that at some point had been considered biased and later corrected, we retrieve the last tagged and the first untagged revisions as the before/after snapshots of what was deemed a violation of Wikipedia's neutral point of view policy. We extract the sentences that were removed or rewritten in that edit. The approach yields sufficient data even in the case of relatively small Wikipedias, such as the Bulgarian one, where 62k articles produced 5k biased sentences. We evaluate our method by manually annotating 520 sentences for Bulgarian and French, and 744 for English. We assess the level of noise and analyze its sources. Finally, we exploit the data with well-known classification methods to detect biased sentences. Code and datasets are hosted at https://github.com/ crim-ca/wiki-bias.
This paper shows how the correspondence between a unordered dependency tree and a sentence that expresses it can be achieved by transforming the tree into a string where each linear precedence link corresponds to one specific syntactic relation. We propose a formal grammar with a distributed architecture that can be used for both synthesis and analysis. We argue for the introduction of a topological tree as an intermediate step between dependency syntax and word order.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.