It is well known that utterances convey a great deal of information about the speaker in addition to their semantic content. One such type of information consists of cues to the speaker's personality traits, the most fundamental dimension of variation between humans. Recent work explores the automatic detection of other types of pragmatic variation in text and conversation, such as emotion, deception, speaker charisma, dominance, point of view, subjectivity, opinion and sentiment. Personality affects these other aspects of linguistic production, and thus personality recognition may be useful for these tasks, in addition to many other potential applications. However, to date, there is little work on the automatic recognition of personality traits. This article reports experimental results for recognition of all Big Five personality traits, in both conversation and text, utilising both self and observer ratings of personality. While other work reports classification results, we experiment with classification, regression and ranking models. For each model, we analyse the effect of different feature sets on accuracy. Results show that for some traits, any type of statistical model performs significantly better than the baseline, but ranking models perform best overall. We also present an experiment suggesting that ranking models are more accurate than multi-class classifiers for modelling personality. In addition, recognition models trained on observed personality perform better than models trained using selfreports, and the optimal feature set depends on the personality trait. A qualitative analysis of the learned models confirms previous findings linking language and personality, while revealing many new linguistic markers.
Recent work in natural language generation has begun to take linguistic variation into account, developing algorithms that are capable of modifying the system's linguistic style based either on the user's linguistic style or other factors, such as personality or politeness. While stylistic control has traditionally relied on handcrafted rules, statistical methods are likely to be needed for generation systems to scale to the production of the large range of variation observed in human dialogues. Previous work on statistical natural language generation (SNLG) has shown that the grammaticality and naturalness of generated utterances can be optimized from data; however these data-driven methods have not been shown to produce stylistic variation that is perceived by humans in the way that the system intended. This paper describes Personage, a highly parameterizable language generator whose parameters are based on psychological findings about the linguistic reflexes of personality. We present a novel SNLG method which uses parameter estimation models trained on personality-annotated data to predict the generation decisions required to convey any combination of scalar values along the five main dimensions of personality. A human evaluation shows that parameter estimation models produce recognizable stylistic variation along multiple dimensions, on a continuous scale, and without the computational cost incurred by overgeneration techniques.
One of the biggest challenges in the development and deployment of spoken dialogue systems is the design of the spoken language generation module. This challenge arises from the need for the generator to adapt to many features of the dialogue domain, user population, and dialogue context. A promising approach is trainable generation, which uses general-purpose linguistic knowledge that is automatically adapted to the features of interest, such as the application domain, individual user, or user group. In this paper we present and evaluate a trainable sentence planner for providing restaurant information in the MATCH dialogue system. We show that trainable sentence planning can produce complex information presentations whose quality is comparable to the output of a templatebased generator tuned to this domain. We also show that our method easily supports adapting the sentence planner to individuals, and that the individualized sentence planners generally perform better than models trained and tested on a population of individuals. Previous work has documented and utilized individual preferences for content selection, but to our knowledge, these results provide the first demonstration of individual preferences for sentence planning operations, affecting the content order, discourse structure and sentence structure of system responses. Finally, we evaluate the contribution of different feature sets, and show that, in our application, n-gram features often do as well as features based on higher-level linguistic representations.
Conversation is an essential component of social behavior, one of the primary means by which humans express intentions, beliefs, emotions, attitudes and personality. Thus the development of systems to support natural conversational interaction has been a long term research goal. In natural conversation, humans adapt to one another across many levels of utterance production via processes variously described as linguistic style matching, entrainment, alignment, audience design, and accommodation. A number of recent studies strongly suggest that dialogue systems that adapted to the user in a similar way would be more effective. However, a major research challenge in this area is the ability to dynamically generate user-adaptive utterance variations. As part of a personality-based user adaptation framework, this article describes Personage, a highly parameterizable generator which provides a large number of parameters to support adaptation to a user's linguistic style. We show how we can systematically apply results from psycholinguistic studies that document the linguistic reflexes of personality, in order to develop models to control Personage's parameters, and produce utterances matching particular personality profiles. When we evaluate these outputs with human judges, the results indicate that humans perceive the personality of system utterances in the way that the system intended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.