In this study, we explore and discuss nanoparticles and nanoscale materials and their use in medicine (nanomedicine) and pharmaceutics (nanopharmaceutics). The study is aimed at shedding light on this highly multidisciplinary research field and at examining the influence of research funding, industrial applications, and legal and regulatory frameworks on the research in this field, a clear understanding of which is essential to efficiently support the translation of research findings into industrial and clinical applications and to enable access to a larger society.
Abstract. In recent years, large distributed collaborative projects have become very prominent in scientific research, allowing exchanges between laboratories located in different institutions and countries and between various domains of competence. Particularly the work on nanotoxicity -a field which has only been under investigation for a few years and is still lacking regulatory framework -highlighted the need for well-controlled methods, as well as rules for the handling and disposal of used materials. To obtain comparable and reproducible results of experiments conducted in a distributed context, the standardisation and proper documentation of the applied methods is crucial. The European project NanoDiaRA, whose aim is to develop nanoparticles and biomarkers for the early diagnosis of inflammatory disease, faces this situation as it involves 15 European partners and brings together different scientific cultures and professional backgrounds. Protocols especially developed for Superparamagnetic Iron Oxide Nanoparticles and a management system were designed and implemented within the NanoDiaRA project to fulfil those needs. The main goals were the establishment of standardised Standard Operating Procedures assuring transparency and reproducibility and the provision of access to these protocols to every project partner, as well as their clear allocation to carry out precise measurements and production steps.
We find that the aims of the projects are similar, emphasising the application of the knowledge and skills from the taught element of their course in a complex development project, often including interactions with a real client. Although we show in this analysis that projects serve a similar purpose in the IS degree courses, the associated learning outcomes and the assessment practice varies across the institutions. We identify some gaps in the skills and abilities that are not being assessed. In further work we are planning to consult final year students undertaking their projects and their supervisors, in order to gain an understanding of how project assessment criteria are actually put to use.
Nanomaterials have attracted much interest in the medical field and related applications as their distinct properties in the nano-range enable new and improved diagnosis and therapies. Owing to these properties and their potential interactions with the human body and the environment, the impact of nanomaterials on humans and their potential toxicity have been regarded a very significant issue.Consequently, nanomaterials are the subject of a wide range of cutting-edge research efforts in the medical and related fields to thoroughly probe their potential beneficial utilizations and their more negative effects. We posit that the lack of standardization in the field is a serious shortcoming as it has led to the establishment of methods and results that do not ensure sufficient consistency and thus in our view can possibly result in research outputs that are not as robust as they should be. The main aim of this article is to present how NanoDiaRA, a large FP7 European multidisciplinary project that seeks to investigate and develop nanotechnology-based diagnostic systems, has developed and implemented robust, standardized methods to support research practices involving the engineering and manipulation of nanomaterials. First, to contextualize this research, an overview of the measures defined by different regulatory bodies concerning nano-safety is presented. Although these authorities have been very active in the past several years, many questions remain unanswered in our view. Second, a number of national and international projects that attempted to ensure more reliable exchanges of methods and results are discussed. However, the frequent lack of publication of procedures and protocols in research can often be a hindrance for sharing those good practices. Subsequently, the efforts made through NanoDiaRA to introduce standardized methods and techniques to support the development and utilization of nanomaterials are discussed in depth. A series of semi-structured interviews were conducted with the partners of this project, and the interviews were analyzed thematically to highlight the determined efforts of the researchers to standardize their methods.Finally, some recommendations are made towards the setting up of well-defined methods to support the high-quality work of collaborative nanoparticle-based research and development projects and to enhance standardization processes.
Large and distributed science projects present researchers with a challenging environment for interaction and collaboration. While digital technologies offer promises in supporting these difficulties, researchers appear reluctant to discontinue their use of analogue resources. We present a study of communication practices in very large-scale collaborative scientific research programmes that involve multidisciplinary and multinational research consortia. Qualitative data collection with researchers, principal investigators and project coordinators were carried out to examine the conduct and coordination of biological, biomedical and chemistry experiments that were distributed over multiple geographical locations. Results show that many problems in collaboration appear to result from the collective documentation of experimental operating procedures, tracking of experimental samples, and the sharing and cross-association of physical and digital experimental materials. Our analysis highlights the crucial but problematic role of the laboratory notebook as a driver for collaboration, most notably in supporting traceability of the distributed experimental process. We identify opportunities for improving experimental coordination, scientific communication and project synchronisation, drawing implications for digital interaction design that offers opportunities to enhance research coordination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.