mTOR ͉ nutrient sensing ͉ amino acids ͉ insulin signaling
To examine the molecular mechanisms by which plasma amino acid elevation impairs insulin action, we studied seven healthy men twice in random order during infusion of an amino acid mixture or saline (total plasma amino acid ϳ6 vs. ϳ2 mmol/l). Somatostatin-insulinglucose clamps created conditions of low peripheral hyperinsulinemia (ϳ100 pmol/l, 0 -180 min) and prandial-like peripheral hyperinsulinemia (ϳ430 pmol/l, 180 -360 min). At low peripheral hyperinsulinemia, endogenous glucose production (EGP) did not change during amino acid infusion but decreased by ϳ70% during saline infusion (EGP 150 -180 min 11 ؎ 1 vs. 3 ؎ 1 mol ⅐ kg ؊1 ⅐ min ؊1 , P ؍ 0.001). Prandial-like peripheral hyperinsulinemia completely suppressed EGP during both protocols, whereas whole-body rate of glucose disappearance (R d ) was ϳ33% lower during amino acid infusion (R d 330 -360 min 50 ؎ 4 vs. 75 ؎ 6 mol ⅐ kg ؊1 ⅐ min ؊1 , P ؍ 0.002) indicating insulin resistance. In skeletal muscle biopsies taken before and after prandiallike peripheral hyperinsulinemia, plasma amino acid elevation markedly increased the ability of insulin to activate S6 kinase 1 compared with saline infusion (ϳ3.7-vs. ϳ1.9-fold over baseline). Furthermore, amino acid infusion increased the inhibitory insulin receptor substrate-1 phosphorylation at Ser312 and Ser636/639 and decreased insulin-induced phosphoinositide 3-kinase activity. However, plasma amino acid elevation failed to reduce insulin-induced Akt/protein kinase B and glycogen synthase kinase 3␣ phosphorylation. In conclusion, amino acids impair 1) insulin-mediated suppression of glucose production and 2) insulin-stimulated glucose disposal in skeletal muscle. Our results suggest that overactivation of the mammalian target of rapamycin/S6 kinase 1 pathway and inhibitory serine phosphorylation of insulin receptor substrate-1 underlie the impairment of insulin action in amino acidinfused humans. Diabetes 54:2674 -2684, 2005
Retinal neural transmission represents a key function of the eye. Identifying the molecular components of this vital process is helped by studies of selected human genetic eye disorders. For example, mutations in the calcium channel subunit gene CACNA1F cause incomplete X-linked congenital stationary night blindness (CSNB2 or iCSNB), a human retinal disorder with abnormal electrophysiological response and visual impairments consistent with a retinal neurotransmission defect. To understand the subcellular basis of this retinal disorder, we generated a mouse with a loss-of-function mutation by inserting a self-excising Cre-lox-neo cassette into exon 7 of the murine orthologue, Cacna1f. Electroretinography of the mutant mouse revealed a scotopic a-wave of marginally reduced amplitude compared with the wild-type mouse and absence of the post-receptoral b-wave and oscillatory potentials. Cone ERG responses together with visual evoked potentials and multi-unit activity in the superior colliculus were also absent. Calcium imaging in Fluo-4 loaded retinal slices depolarized with KCl showed 90% less peak signal in the photoreceptor synapses of the Cacna1f mutant than in wild-type mice. The absence of post-receptoral ERG responses and the diminished photoreceptor calcium signals are consistent with a loss of Ca((2+)) channel function in photoreceptors. Immunocytochemistry showed no detectable Ca(v)1.4 protein in the outer plexiform layer of Cacna1f-mutant mice, profound loss of photoreceptor synapses, and abnormal dendritic sprouting of second-order neurons in the photoreceptor layer. Together, these findings in the Cacna1f-mutant mouse reveal that the Ca(v)1.4 calcium channel is vital for the functional assembly and/or maintenance and synaptic functions of photoreceptor ribbon synapses. Moreover, the outcome of this study provides critical clues to the pathophysiology of the human retinal channelopathy of X-linked incomplete CSNB.
Dietary proteins and amino acids are important modulators of glucose metabolism and insulin sensitivity. Although high intake of dietary proteins has positive effects on energy homeostasis by inducing satiety and possibly increasing energy expenditure, it has detrimental effects on glucose homeostasis by promoting insulin resistance and increasing gluconeogenesis. Varying the quality rather than the quantity of proteins has been shown to modulate insulin resistance induced by Western diets and has revealed that proteins derived from fish might have the most desirable effects on insulin sensitivity. In vitro and in vivo data also support an important role of amino acids in glucose homeostasis through modulation of insulin action on muscle glucose transport and hepatic glucose production, secretion of insulin and glucagon, as well as gene and protein expression in various tissues. Moreover, amino acid signaling is integrated by mammalian target of rapamycin, a nutrient sensor that operates a negative feedback loop toward insulin receptor substrate 1 signaling, promoting insulin resistance for glucose metabolism. This integration suggests that modulating dietary proteins and the flux of circulating amino acids generated by their consumption and digestion might underlie powerful new approaches to treat various metabolic diseases such as obesity and diabetes.
The cellular mechanism by which high-fat feeding induces skeletal muscle insulin resistance was investigated in the present study. Insulin-stimulated glucose transport was impaired (ϳ40 -60%) in muscles of high fat-fed rats. Muscle GLUT4 expression was significantly lower in these animals (ϳ40%, P < 0.05) but only in type IIa-enriched muscle. Insulin stimulated the translocation of GLUT4 to both the plasma membrane and the transverse (T)-tubules in chow-fed rats. In marked contrast, GLUT4 translocation was completely abrogated in the muscle of insulin-stimulated high fat-fed rats. High-fat feeding markedly decreased insulin receptor substrate (IRS)-1-associated phosphatidylinositol (PI) 3-kinase activity but not insulin-induced tyrosine phosphorylation of the insulin receptor and IRS proteins in muscle. Impairment of PI 3-kinase function was associated with defective Akt/protein kinase B kinase activity (؊40%, P < 0.01) in insulin-stimulated muscle of high fat-fed rats, despite unaltered phosphorylation (Ser473/Thr308) of the enzyme. Interestingly, basal activity of atypical protein kinase C (aPKC) was elevated in muscle of high fat-fed rats compared with chow-fed controls. Whereas insulin induced a twofold increase in aPKC kinase activity in the muscle of chowfed rats, the hormone failed to further increase the kinase activity in high fat-fed rat muscle. In conclusion, it was found that GLUT4 translocation to both the plasma membrane and the T-tubules is impaired in the muscle of high fat-fed rats. We identified PI 3-kinase as the first step of the insulin signaling pathway to be impaired by high-fat feeding, and this was associated with alterations in both Akt and aPKC kinase activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.