The gene encoding the proprotein convertase subtilisin/kexin type 9 (PCSK9) is linked to familial hypercholesterolemia, as are those of the low-density lipoprotein receptor (LDLR) and apolipoprotein B. PCSK9 enhances LDLR degradation, resulting in low-density lipoprotein accumulation in plasma. To analyze the role of hepatic PCSK9, total and hepatocyte-specific knockout mice were generated. They exhibit 42% and 27% less circulating cholesterol, respectively, showing that liver PCSK9 was responsible for two thirds of the phenotype. We also demonstrated that, in liver, PCSK9 is exclusively expressed in hepatocytes, representing the main source of circulating PCSK9. The data suggest that local but not circulating PCSK9 regulates cholesterol levels. Although transgenic mice overexpressing high levels of liver and circulating PCSK9 led to the almost complete disappearance of the hepatic LDLR, they did not recapitulate the plasma cholesterol levels observed in LDLRdeficient mice. Single LDLR or double LDLR/PCSK9 knockout mice exhibited similar cholesterol profiles, indicating that PCSK9 regulates cholesterol homeostasis exclusively through the LDLR. Finally, the regenerating liver of PCSK9-deficient mice exhibited necrotic lesions, which were prevented by a high-cholesterol diet. However, lipid accumulation in hepatocytes of these mice was markedly reduced under both chow and high-cholesterol diets, revealing that PCSK9 deficiency confers resistance to liver steatosis. Conclusion: Although PCSK9 is a target for controlling hypercholesterolemia, our data indicate that upon hepatic damage, patients lacking PCSK9 could be at risk. (HEPATOLOGY 2008;48:646-654.) P roprotein convertase subtilisin/kexin type 9 (PCSK9) 1 is the ninth member of the proprotein convertase family. 2 The first seven members, including furin, cleave protein precursors of hormones, growth factors, receptors, or surface glycoproteins at basic sites (after Arg or Lys residues). The eighth member, SKI-1 3 or S1P, 4 is known to cleave membrane-bound transcription factors such as the SREBPs 5 in their luminal domains, resulting in the release of their DNA-binding domain. Proprotein convertases can also inactivate secreted substrates, such as endothelial lipase 6 and PCSK9. 7 PCSK9 is synthesized as a precursor that undergoes autocatalytic cleavage of its N-terminal prosegment in the ER, 1 a step required for its exit from this compartment and its efficient secretion. Secreted PCSK9 remains associated with its prosegment. 1 Different from the other proprotein convertases, this serine protease has no known substrate other than itself. In addition, the tight association of the prosegment with the active site 8 raises the question of the existence of an in trans PCSK9 protease
Dietary proteins and amino acids are important modulators of glucose metabolism and insulin sensitivity. Although high intake of dietary proteins has positive effects on energy homeostasis by inducing satiety and possibly increasing energy expenditure, it has detrimental effects on glucose homeostasis by promoting insulin resistance and increasing gluconeogenesis. Varying the quality rather than the quantity of proteins has been shown to modulate insulin resistance induced by Western diets and has revealed that proteins derived from fish might have the most desirable effects on insulin sensitivity. In vitro and in vivo data also support an important role of amino acids in glucose homeostasis through modulation of insulin action on muscle glucose transport and hepatic glucose production, secretion of insulin and glucagon, as well as gene and protein expression in various tissues. Moreover, amino acid signaling is integrated by mammalian target of rapamycin, a nutrient sensor that operates a negative feedback loop toward insulin receptor substrate 1 signaling, promoting insulin resistance for glucose metabolism. This integration suggests that modulating dietary proteins and the flux of circulating amino acids generated by their consumption and digestion might underlie powerful new approaches to treat various metabolic diseases such as obesity and diabetes.
The proprotein convertase subtilisin kexin-9 (PCSK9) circulates in plasma as mature and furin-cleaved forms. A polyclonal antibody against human PCSK9 was used to develop an ELISA that measures total plasma PCSK9 rather than only the mature form. A cross-sectional study evaluated plasma levels in normal (n = 254) and hypercholesterolemic (n = 200) subjects treated or untreated with statins or statin plus ezetimibe. In controls, mean plasma PCSK9 (89.5 ± 31.9 ng/ml) correlated positively with age, total cholesterol, LDL-cholesterol (LDL-C), triglycerides, and fasting glucose. Sequencing PCSK9 from individuals at the extremes of the normal PCSK9 distribution identifi ed a new loss-of-function R434W variant associated with lower levels of circulating PCSK9 and LDL-C. In hypercholesterolemic subjects, PCSK9 levels were higher than in controls (99.3 ± 31.7 ng/ml, P < 0.04) and increased in proportion to the statin dose, combined or not with ezetimibe. In treated patients (n = 139), those with familial hypercholesterolemia (FH; due to LDL receptor gene mutations) had higher PCSK9 values than non-FH (147.01 ± 42.5 vs . 127.2 ± 40.8 ng/ml, P < 0.005), but LDL-C reduction correlated positively with achieved plasma PCSK9 levels to a similar extent in both subsets ( r = 0.316, P < 0.02 in FH and r = 0.275, P < 0.009 in non-FH). The detection of circulating PCSK9 in both FH and non-FH subjects means that this assay could be used to monitor response to therapy in a wide range of patients.-Dubuc, G., M. Tremblay, G. Paré, H. Jacques, J. Hamelin, S. Benjannet, L. Boulet, J. Genest, L. Bernier, N. G. Seidah, and J. Davignon. A new method for measurement of total plasma PSCK9: clinical applications.
The aim of the present study was to determine the effects of feeding various dietary proteins on insulin sensitivity and glucose tolerance in rats. Male Wistar rats were fed for 28 days with isoenergetic diets containing either casein, soy protein, or cod protein. Cod protein-fed and soy protein-fed rats had lower fasting plasma glucose and insulin concentrations compared with casein-fed animals. After intravenous glucose bolus, cod protein- and soy protein-fed rats induced lower incremental areas under glucose curves compared with casein-fed animals. Improved peripheral insulin sensitivity was confirmed by higher glucose disposal rates in cod protein- and soy protein-fed rats (15.2 +/- 0.3 and 13.9 +/- 0.6 mg. kg(-1). min(-1), respectively) compared with casein-fed animals (6.5 +/- 0.7 mg. kg(-1). min(-1), P < 0.05). Moreover, test meal experiments revealed that, in the postprandial state, the lower plasma insulin concentrations in cod protein- and soy protein-fed animals could be also due to decreased pancreatic insulin release and increased hepatic insulin removal. In conclusion, the metabolic responses to three common dietary proteins indicate that cod and soy proteins, when compared with casein, improve fasting glucose tolerance and peripheral insulin sensitivity in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.