We consider weighted graphs, we equip them with a metric structure given by a weighted distance, and we discuss essential self-adjointness for weighted graph Laplacians and Schrödinger operators in the metrically non complete case.
We define the magnetic Schrödinger operator on an infinite graph by the data of a magnetic field, some weights on vertices and some weights on edges. We discuss essential self-adjointness of this operator for graphs of bounded degree. The main result is a discrete version of a result of two authors of the present paper.On définit l'opérateur de Schrödinger avec champ magnétique sur un graphe infini par la donnée d'un champ magnétique, de poids sur les sommets et de poids sur les arêtes. Lorsque le graphe est de degré borné, on étudie le caractère essentiellement auto-adjoint d'un tel opérateur. Le résultat principal est une version discrète d'un résultat de deux des auteurs du présent article.
We consider a Schrödinger operator with a magnetic field (and no electric field) on a domain in the Euclidean space with a compact boundary. We give sufficient conditions on the behaviour of the magnetic field near the boundary which guarantees essential self-adjointness of this operator. From the physical point of view, it means that the quantum particle is confined in the domain by the magnetic field. We construct examples in the case where the boundary is smooth as well as for polytopes; these examples are highly simplified models of what is done for nuclear fusion in tokamacs. We also present some open problems.
Given a Hermitian vector bundle over an infinite weighted graph, we define the Laplacian associated to a unitary connection on this bundle and study a perturbation of this Laplacian by an operator-valued potential. We give a sufficient condition for the resulting Schrödinger operator to serve as the generator of a strongly continuous contraction semigroup in the corresponding ℓ p -space. Additionally, in the context of ℓ 2 -space, we study the essential self-adjointness of the corresponding Schrödinger operator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.