Spontaneous equine recurrent uveitis (ERU) is an incurable autoimmune disease affecting the eye. Identifying biological markers or pathways associated with this disease may allow the understanding of its pathogenesis at a molecular level. The vitreous is the body fluid closest to the disease-affected tissue and possibly also an effector of pathological processes relevant for ERU. Surgical removal of vitreous leads to cessation of relapses in spontaneous uveitis of both man and horse, therefore vitreous composites are likely to contribute to disease progression. Uveitic vitreous is likely to contain potential biomarkers in relatively undiluted quantities. With the goal to identify these markers, we systematically compared vitreous from healthy and disease-affected eyes by proteomic profiling. Nine differentially expressed proteins were identified, that are functionally related to immune response, inflammation, and maintenance of the blood-retinal barrier. One of these, pigment epithelium-derived factor, a protein involved in maintaining a proper blood-retina barrier as well as protecting from neoangiogenesis was additionally found to be down-regulated within uveitic retinal lesions whereas, conversely, vascular endothelial growth factor was found to be up-regulated at these sites. Together, these changes point to as of yet undiscovered biological pathways involved in the pathogenesis of this autoimmune disease.
Equine recurrent uveitis (ERU) is an autoimmune disease that occurs with a high prevalence (10%) in horses. ERU represents the only reliable spontaneous model for human autoimmune uveitis. We already identified and characterized novel autoantigens (malate dehydrogenase, recoverin, CRALBP) by analyzing the autoantibody-binding pattern of horses affected by spontaneous recurrent uveitis (ERU) to the retinal proteome. CRALBP also seems to be relevant to human autoimmune uveitis. Proteomic screening of vitreous and retinal samples from ERU diseased cases in comparison to healthy controls has led to the identification of a series of differentially regulated proteins, which are functionally linked to the immune system and the maintenance of the blood-retinal barrier.
There is increasing evidence that a large proportion of dilated cardiomyopathy (DCM) cases are mediated by autoimmune processes. Since DCM is a fatal disorder with rapid aggravation and is the leading cause of heart transplantation, further insights into disease pathogenesis are needed. Recent studies have separated the pathogenic capacity of autoantibodies and initial clinical trials removing such autoantibodies via immunoadsorption have been promising. In order to elucidate the full autoantibody repertoire involved in DCM, we applied an autoantibody screening test using ventricular and atrial proteomes as autoantigenic sources and subsequently tested the autoantibody-binding patterns of sera from dogs with spontaneous DCM. With this method, we detected five potentially DCM-related autoantigens which were identified by MS as being: myosin heavy chain cardiac muscle alpha isoform, alpha cardiac actin, mitochondrial aconitate hydratase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and brain glycogen phosphorylase (GPBB). The recovery of two known DCM autoantigens (myosin heavy chain and alpha cardiac actin) and the discovery of three novel autoantigens (mitochondrial aconitate hydratase, GADPH, and GPBB) underscore the efficacy of this experimental method and the significance of the spontaneous canine DCM model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.