Knowledge of the exact distribution of meiotic crossovers (COs) and gene conversions (GCs) is essential for understanding many aspects of population genetics and evolution, from haplotype structure and long-distance genetic linkage to the generation of new allelic variants of genes. To this end, we resequenced the four products of 13 meiotic tetrads along with 10 doubled haploids derived from Arabidopsis thaliana hybrids. GC detection through short reads has previously been confounded by genomic rearrangements. Rigid filtering for misaligned reads allowed GC identification at high accuracy and revealed an ∼80-kb transposition, which undergoes copy-number changes mediated by meiotic recombination. Non-crossover associated GCs were extremely rare most likely due to their short average length of ∼25–50 bp, which is significantly shorter than the length of CO-associated GCs. Overall, recombination preferentially targeted non-methylated nucleosome-free regions at gene promoters, which showed significant enrichment of two sequence motifs.DOI: http://dx.doi.org/10.7554/eLife.01426.001
Epigenetics is receiving growing attention in the plant science community. Epigenetic modifications are thought to play a particularly important role in fluctuating environments. It is hypothesized that epigenetics contributes to plant phenotypic plasticity because epigenetic modifications, in contrast to DNA sequence variation, are more likely to be reversible. The population of decrease in DNA methylation 1-2 (ddm1-2)-derived epigenetic recombinant inbred lines (epiRILs) in Arabidopsis thaliana is well suited for studying this hypothesis, as DNA methylation differences are maximized and DNA sequence variation is minimized. Here, we report on the extensive heritable epigenetic variation in plant growth and morphology in neutral and saline conditions detected among the epiRILs. Plant performance, in terms of branching and leaf area, was both reduced and enhanced by different quantitative trait loci (QTLs) in the ddm1-2 inherited epigenotypes. The variation in plasticity associated significantly with certain genomic regions in which the ddm1-2 inherited epigenotypes caused an increased sensitivity to environmental changes, probably due to impaired genetic regulation in the epiRILs. Many of the QTLs for morphology and plasticity overlapped, suggesting major pleiotropic effects. These findings indicate that epigenetics contributes substantially to variation in plant growth, morphology, and plasticity, especially under stress conditions.
Mutants in the PRT1 gene of Arabidopsis thaliana are impaired in the degradation of a normally shortlived intracellular protein that contains a destabilizing Nterminal residue. Proteins bearing such residues are the substrates of an ubiquitin-dependent proteolytic system called the N-end rule pathway. The chromosomal position of PRT1 was determined, and the PRT1 gene was isolated by map-based cloning. The 45-kDa PRT1 protein contains two RING finger domains and one ZZ domain. No other proteins in databases match these characteristics of PRT1. There is, however, a weak similarity to Rad18p of Saccharomyces cerevisiae. The RING finger domains have been found in a number of other proteins that are involved in ubiquitin conjugation, consistent with the proposed role of PRT1 in the plant N-end rule pathway.
In this study, we explored the application of a yeast three-hybrid (Y3H)-based compound/protein display system to scanning the proteome for targets of kinase inhibitors. Various known cyclin-dependent kinase (CDK) inhibitors, including purine and indenopyrazole analogs, were displayed in the form of methotrexate-based hybrid ligands and deployed in cDNA library or yeast cell array-based screening formats. For all inhibitors, known cell cycle CDKs as well as novel candidate CDK-like and/or CDK-unrelated kinase targets could be identified, many of which were independently confirmed using secondary enzyme assays and affinity chromatography. The Y3H system described here may prove generally useful in the discovery of candidate drug targets.
ORCID ID: 0000-0001-8918-0711 (J.J.B.K.)For crops that are grown for their fruits or seeds, elevated temperatures that occur during flowering and seed or fruit set have a stronger effect on yield than high temperatures during the vegetative stage. Even short-term exposure to heat can have a large impact on yield. In this study, we used Arabidopsis thaliana to study the effect of short-term heat exposure on flower and seed development. The impact of a single hot day (35°C) was determined in more than 250 natural accessions by measuring the lengths of the siliques along the main inflorescence. Two sensitive developmental stages were identified, one before anthesis, during male and female meiosis, and one after anthesis, during fertilization and early embryo development. In addition, we observed a correlation between flowering time and heat tolerance. Genome-wide association mapping revealed four quantitative trait loci (QTLs) strongly associated with the heat response. These QTLs were developmental stage specific, as different QTLs were detected before and after anthesis. For a number of QTLs, T-DNA insertion knockout lines could validate assigned candidate genes. Our findings show that the regulation of complex traits can be highly dependent on the developmental timing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.