One of the most striking features of the injured mature peripheral nervous system is the ability to regenerate. The lesioned peripheral nervous system displays stereotypic histopathological reactions indicating the activation of a co-ordinated lesion-induced gene expression programme. Previous research has already identified molecular components of this axonal switch from a mature transmitting to a regenerative growth mode. The observed alterations in gene expression within the lesioned distal nerve stump were largely attributed to recapitulated developmental processes. However, to our knowledge, this hypothesis has not been proven systematically. Most of the stereotypic molecular and cellular reactions during nerve development and repair can be assigned to specific time windows. Consequently, we have compared gene expression profiles of both paradigms at six different time-points each by means of cDNA array hybridization. Our data identified injury-specific molecular reactions and revealed to what extent developmental mechanisms are reactivated in response to nerve lesion. Ninety-one genes (47% of the regeneration-associated genes) were found to be significantly regulated in both paradigms, suggesting that regeneration only partially recapitulates development and that approximately half of the regulated genes are part of a regenerationdependent programme. Interestingly, mainly genes encoding signal transducers or factors involved in processes such as cell death, immune response, transport and transcriptional regulation showed injury-specific gene expression. Keywords: cDNA array analysis, development, gene expression profiling, nerve injury, sciatic nerve regeneration. Adult peripheral nerves in mammals have an intrinsic capacity to regenerate after axotomy. This spontaneous regeneration potential distinguishes the peripheral nervous system from the CNS. Recent advances in the study of peripheral nerve regeneration have revealed that successful neuronal survival and target reinnervation depend on both the intrinsic regenerative capacity of peripheral axons and the presence of a growth-permissive environment.DNA array-based expression profiling allows identification of the spectrum of genes expressed during peripheral nerve regeneration. Recently, several studies were published describing axotomy-induced changes in peripheral nerve gene expression. However, these studies mainly focused on those transcriptional changes that were induced in the cell bodies of the axotomized sensory or spinal motor neurones (Fan et al. 2001;Kim et al. 2001;Bonilla et al. 2002;Costigan et al. 2002;Nagarajan et al. 2002;Xiao et al. 2002;Cameron et al. 2003). Besides a previous study published by our laboratory (Bosse et al. Abbreviations used: ApoD, apolipoprotein D; AP-1, adaptor protein complex AP-1; ATF, activating transcription factor; bcl2, apoptosis regulator protein Bcl-2 like protein 1; BMP-2, bone morphogenic protein; bZIP, basic leucine zipper transcription factor; C/EBPd, CCAAT/ enhancer binding protein delta; CREB...
The cytokines SDF-1alpha and -1beta are two alternatively spliced variants of the CXC (alpha) chemokines that are highly conserved among species. SDF-1alpha was shown to function as a B-cell maturation factor, a ligand for the CXCR4 (LESTR/fusin) chemokine receptor, thereby inhibiting replication of T cell-tropic HIV-1 strains and inducing cell death in human neuronal cell lines. In this report the cloning of the rat SDF-1beta cDNA and a new SDF-1 isoform, SDF-1gamma, are presented. Using Northern blot analysis, the expression pattern of both isoforms was studied in different tissues and it is shown that during postnatal development of the central and peripheral nervous system SDF-1beta- and SDF-1gamma-mRNA expression is inversely regulated. Whilst SDF-1beta-mRNA is the predominant isoform in embryonic and early postnatal nerve tissue, SDF-1gamma-mRNA is expressed at higher levels in adulthood. After peripheral nerve lesion a transient increase in SDF-1beta-mRNA expression is observed. As revealed by in situ hybridization, neurons and Schwann cells are the main cellular sources of both SDF-1beta and SDF-1gamma mRNAs in the nervous system. Computer-assisted analysis revealed that both transcripts encode secreted peptides with putative proteolytic cleavage sites which might generate novel neuropeptides.
Two peripheral myelin protein PMP22 transcripts, CD25 and SR13, have been identified by Northern blot and RNA-polymerase chain reaction (PCR) methods in rat. The CD25 and SR13 mRNA species (each approximately 1.8 kb in size) differ significantly in their 5'-untranslated region (5'-UTR) sequences but encode the same protein. While CD25 mRNA is largely confined to the peripheral nervous system, the SR13 transcript is more ubiquitously expressed in rat tissues. Both transcripts are differentially expressed during postnatal sciatic nerve development. While CD25 expression steadily increases from low levels in neonates up to a maximum at postnatal day 14, SR13 mRNA levels are elevated at birth but decrease throughout adulthood. CD25 and SR13 transcripts are expressed at very low constant levels in developing and adult brain. In degenerating and regenerating segments of injured peripheral nerve changes in CD25 mRNA levels clearly resemble the expression pattern of other myelin genes, whereas expression of SR13 is inversely correlated with the time course of Schwann cell proliferation. In cultured rat meningeal fibroblasts SR13 mRNA expression is strictly growth arrest-specific and independent of forskolin. On the other hand, regulation of CD25 mRNA levels in these cells is more complex with respect to interfering effects of serum and forskolin. In cultured Schwann cells neither CD25 nor SR13 expression is growth arrest-specific. However, both transcript levels are consistently enhanced by forskolin under all conditions of cell growth tested. Expression of CD25 (but not SR13) depends on high Schwann cell density. Our results substantiate the hypothesis that PMP22 serves two biological functions, one related to cell growth (SR13) and another to myelination (CD25).
Mesenchymal stem cells (MSC) have been isolated from almost every adult tissue. In cord blood (CB), different non-hematopoietic CD45-, CD34- adherent cell populations can be generated: the cord blood derived MSC (CB-MSC), that behave almost like MSC from bone marrow (BM-MSC), and unrestricted somatic stem cells (USSC) which show a distinct differentiation potential into all three germ layers. However, distinguishing these populations easily by molecular markers is still a concern. In this study we were able to present the HOX expression pattern of USSC, CB-MSC and BM-MSC, which in fact allows a discrimination of these populations. Briefly, RT-PCR analysis of the HOX code revealed a high similarity between BM-MSC and CB-MSC, which are both HOX-positive, whereas USSC resembled H9 embryonic stem cells HOX-negative.Especially HOXA9, HOXB7, HOXC10 and HOXD8 are good candidate markers to discriminate MSC from USSC. Thus, our data suggest that the "biological fingerprint" based on the HOX code can be used to distinguish functionally distinct MSC populations derived from bone marrow and cord blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.