Abstract. Ordinarily, Genetic Programming uses little or no mutation. Crossover is the predominant operator. This study tests the effect of a very aggressive use of the mutation operator on the generalization performance of our Compiling Genetic Programming System ('CPGS'). We ran our tests on two benchmark classification problems on very sparse training sets. In all, we performed 240 complete runs of population 3000 for each of the problems, varying mutation rate between 5% and 80~ We found that increasing the mutation rate can significantly improve the generalization capabilities of GP. The mechanism by which mutation affects the generalization capability of GP is not entirely clear. What is clear is that changing the balance between mutation and crossover effects the course of GP training substantially --for example, increasing mutation greatly extends the number of generations for which the GP system can train before the population converges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.