Background: The purpose of this work was to demonstrate an approach to groundwater remedial design that is automated, cost-effective, and broadly applicable to contaminated aquifers in different geologic settings. The approach integrates modeling and optimization for use as a decision support framework for the optimal design of groundwater remediation systems employing pump and treat and re-injection technologies. The technology resulting from the implementation of the methodology, which we call Physics-Based Management Optimization (PBMO), integrates physics-based groundwater flow and transport models, management science, and nonlinear optimization tools to provide stakeholders with practical, optimized well placement locations and flow rates for remediating contaminated groundwater at complex sites. Results: The algorithm implementation, verification, and effectiveness testing was conducted using groundwater conditions at the Umatilla Chemical Depot in Umatilla, Oregon, as a case study. This site was the subject of a government-sponsored remedial optimization study. Our methodology identified the optimal solution 40 times faster than other methods, did not fail to perform when the physics-based models failed to converge, and did not require human intervention during the solution search, in contrast to the other methods. The integration of the PBMO and Lipschitz Global Optimization (LGO) methods with standalone physically based models provides an approach that is applicable to a wide range of hydrogeological flow and transport settings.
Background: Stakeholders are often required to make judgments and decisions about the tradeoffs between multiple competing objectives inherent in any engineering design. Design optimization can provide decision support for such situations, but often prescribes that only a single design solution be selected for a given set of preferences. The purpose of this study is to frame an objective function for assessing how the sensitivity of one objective relative to another varies in space and to demonstrate the method using a real site, with spatially-dependent floodplain access and bridge scour as the objective tradeoffs. Bridge scour is a widespread and expensive infrastructure problem, and the proposed methodology provides the ability to assess how the sensitivity of bridge scour to floodplain access varies at different locations in a river reach.
Results:The site chosen for demonstration purposes was the Lewis Creek in the vicinity of the Quinlan Covered Bridge in Charlotte, VT. Differential evolution (DE) was wrapped around an existing HEC-RAS model. The decision variables corresponded to floodplain access at locations up and downstream of the bridge; the objective function was constructed so that optimal solutions may be interpreted as relative salience of floodplain access to bridge scour. Multiple weightings of the objectives were used to verify that the rank-order of locations was robust. The optimal DE solutions for all weightings resulted in the same sensitivity ranking of locations, providing evidence that the analysis is not dependent on a particular choice of stakeholder objective weightings.
Conclusions:For systems with spatially dependent variables that impact a constraint or objective of interest to stakeholders, a tool for identifying locations where that variable has a particularly strong or weak impact (e.g. where floodplain access is more or less important for bridge scour) has obvious advantages. This study demonstrates a method for conducting such a sensitivity analysis using a numerical optimization scheme. On the real test site, the sensitivity ranking was consistent across multiple stakeholder weightings, providing evidence that the technique is robust, and one that can be used at multiple stages of design. This work demonstrates the utility of a novel interpretation of optimization results in which locations are ranked according to the relative sensitivity of competing objectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.