This paper presents the analysis and discussion of the off-site localization competition track, which took place during the Seventh International Conference on Indoor Positioning and Indoor Navigation (IPIN 2016). Five international teams proposed different strategies for smartphone-based indoor positioning using the same reference data. The competitors were provided with several smartphone-collected signal datasets, some of which were used for training (known trajectories), and others for evaluating (unknown trajectories). The competition permits a coherent evaluation method of the competitors’ estimations, where inside information to fine-tune their systems is not offered, and thus provides, in our opinion, a good starting point to introduce a fair comparison between the smartphone-based systems found in the literature. The methodology, experience, feedback from competitors and future working lines are described.
Indoor localization and indoor pedestrian navigation is an active field of research with increasing attention. As of today, many systems will run on commercial smartphones, but most of them still rely on fingerprinting, which demands high setup and maintenance times. Alternatives, such as simple signal strength prediction models, provide fast setup times, but often do not provide the accuracy required for use cases like indoor navigation or location-based services. While more complex models provide an increased accuracy by including architectural knowledge about walls and other obstacles, they often require additional computation during runtime and demand prior knowledge during setup. Within this work, we will thus focus on simple, easy to set up models and evaluate their performance compared to real-world measurements. The evaluation ranges from a fully-empiric, instant setup, given that the transmitter locations are well known, to a highly optimized scenario based on some reference measurements within the building. Furthermore, we will propose a new signal strength prediction model as a combination of several simple ones. This tradeoff increases accuracy with only minor additional computations. All of the optimized models are evaluated within an actual smartphone-based indoor localization system. This system uses the phone's Wi-Fi, barometer and IMU to infer the pedestrian's current location via recursive density estimation based on particle filtering. We will show that while a 100 % empiric parameter choice for the model already provides enough accuracy for many use cases, a small number of reference measurements is enough to dramatically increase such a system's performance.
Within this work we present an updated version of our indoor localization system for smartphones. The pedestrian’s position is given by means of recursive state estimation using a particle filter to incorporate different probabilistic sensor models. Our recently presented approximation scheme of the kernel density estimation allows to find an exact estimation of the current position, compared to classical methods like weighted-average. Absolute positioning information is given by a comparison between recent Wi-Fi measurements of nearby access points and signal strength predictions. Instead of using time-consuming approaches like classic fingerprinting or measuring the exact positions of access points, we use an optimization scheme based on a set of reference measurements to estimate a corresponding Wi-Fi model. This work provides three major contributions to the system. The most essential contribution is the novel state transition based on continuous walks along a navigation mesh, modeling only the building’s walkable areas. The localization system is further updated by incorporating a threshold-based activity recognition using barometer and accelerometer readings, allowing for continuous and smooth floor changes. Within the scope of this work, we tackle problems like multimodal densities and sample impoverishment (system gets stuck) by introducing different countermeasures. For the latter, a simplification of our previous solution is presented for the first time, which does not involve any major changes to the particle filter. The goal of this work is to propose a fast to deploy localization solution, that provides reasonable results in a high variety of situations. To stress our system, we have chosen a very challenging test scenario. All experiments were conducted within a 13th century historic building, formerly a convent and today a museum. The system is evaluated using 28 distinct measurement series on four different test walks, up to 310 m length and 10 min duration. It can be shown, that the here presented localization solution is able to provide a small positioning error, even under difficult conditions and faulty measurements. The introduced filtering methods allow for a real fail-safe system, while the optimization scheme enables an on-site setup-time of less then 120 min for the building’s 2500 m2 walkable area.
With the addition of the Fine Timing Measurement (FTM) protocol in IEEE 802.11-2016, a promising sensor for smartphone-based indoor positioning systems was introduced. FTM enables a Wi-Fi device to estimate the distance to a second device based on the propagation time of the signal. Recently, FTM has gotten more attention from the scientific community as more compatible devices become available. Due to the claimed robustness and accuracy, FTM is a promising addition to the often used Received Signal Strength Indication (RSSI). In this work, we evaluate FTM on the 2.4 GHz band with 20 MHz channel bandwidth in the context of realistic indoor positioning scenarios. For this purpose, we deploy a least-squares estimation method, a probabilistic positioning approach and a simplistic particle filter implementation. Each method is evaluated using FTM and RSSI separately to show the difference of the techniques. Our results show that, although FTM achieves smaller positioning errors compared to RSSI, its error behavior is similar to RSSI. Furthermore, we demonstrate that an empirically optimized correction value for FTM is required to account for the environment. This correction value can reduce the positioning error significantly.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.