Most island-arc magmatism appears to result from the lowering of the melting point of peridotite within the wedge of mantle above subducting slabs owing to the introduction of fluids from the dehydration of subducting oceanic crust. Volcanic rocks interpreted to contain a component of melt (not just a fluid) from the subducting slab itself are uncommon, but possible examples have been recognized in the Aleutian islands, Baja California, Patagonia and elsewhere. The geochemically distinctive rocks from these areas, termed 'adakites, are often associated with subducting plates that are young and warm, and therefore thought to be more prone to melting. But the subducting lithosphere in some adakite locations (such as the Aleutian islands) appears to be too old and hence too cold to melt. This implies either that our interpretation of adakite geochemistry is incorrect, or that our understanding of the tectonic context of adakites is incomplete. Here we present geochemical data from the Kamchatka peninsula and the Aleutian islands that reaffirms the slab-melt interpretation of adakites, but in the tectonic context of the exposure to mantle flow around the edge of a torn subducting plate. We conclude that adakites are likely to form whenever the edge of a subducting plate is warmed or ablated by mantle flow. The use of adakites as tracers for such plate geometry may improve our understanding of magma genesis and thermal structure in a variety of subduction-zone environments.
Aldehyde oxidases (AOXs) are molybdo-flavoenzymes characterized by broad substrate specificity, oxidizing aromatic/aliphatic aldehydes into the corresponding carboxylic acids and hydroxylating various heteroaromatic rings. The enzymes use oxygen as the terminal electron acceptor and produce reduced oxygen species during turnover. The physiological function of mammalian AOX isoenzymes is still unclear, however, human AOX (hAOX1) is an emerging enzyme in phase-I drug metabolism. Indeed, the number of xenobiotics acting as hAOX1 substrates is increasing. Further, numerous single-nucleotide polymorphisms (SNPs) have been identified within the hAOX1 gene. SNPs are a major source of inter-individual variability in the human population, and SNP-based amino acid exchanges in hAOX1 reportedly modulate the catalytic function of the enzyme in either a positive or negative fashion. In this report we selected ten novel SNPs resulting in amino acid exchanges in proximity to the FAD site of hAOX1 and characterized the purified enzymes after heterologous expression in Escherichia coli. The hAOX1 variants were characterized carefully by quantitative differences in their ability to produce superoxide radical. ROS represent prominent key molecules in physiological and pathological conditions in the cell. Our data reveal significant alterations in superoxide anion production among the variants. In particular the SNP-based amino acid exchange L438V in proximity to the isoalloxanzine ring of the FAD cofactor resulted in increased rate of superoxide radical production of 75%. Considering the high toxicity of the superoxide in the cell, the hAOX1-L438V SNP variant is an eventual candidate for critical or pathological roles of this natural variant within the human population.
The different roles of variable mantle sources and intra-crustal differentiation processes at Bakening volcano (Kamchatka) and contemporaneous basaltic monogenetic centers are studied using major and trace elements and isotopic data.Three suites of volcanic activity are recognized: (1) plateau basalts of Lower Pleistocene age; (2) andesites and dacites of the Bakening volcano, the New Bakening volcano dacitic centers nearby; and (3) contemporaneous basaltic cinder cones erupted along subduction zoneÐparallel N±S faults. Age-data show that the last eruptions in the Bakening area occurred only 600± 1200 years ago, suggesting the volcano is potentially active.Major element variations and petrographic observations provides evidence for a fractionation assemblage of olivine, clinopyroxene,^plagioclase,^magnetite (?) within the basaltic suite. The fractionation in the andesites and dacites is dominated by amphibole, clinopyroxene, orthopyroxene and plagioclase plus minor amounts of magnetite and apatite. The youngest cpx-opx-andesites of Bakening main volcano deviate from that trend. Their source was probably formed by mixing of basaltic magmas into the silicic magma chamber of the Bakening volcano. Overall trace element patterns as well as the Sr±Nd± Pb isotopic compositions are quite similar in all rocks despite large differences in their chemical composition (from basalt to rhyodacite). In detail however, the andesite±dacites of the central Bakening volcano show a stronger enrichment in the more incompatible elements and depletion in HREE compared to the monogenetic basaltic centers. This results in a crossing of the REE-pattern for the two suites. The decrease in the HREEs can be explained by amphibole fractionation. A slab component is less likely because it would result in fractionation of the HREE from each other, which is not observed. The higher relative amounts of LILE in the dacitic and the large scatter in the basaltic rocks must be the result of a variable source enrichment by slab-derived¯uids overprinting a variable depleted mantle wedge. The plateau basalts are less depleted in HFSE and show a more fractionated HREE pattern. These lavas could either result from a slab component or the addition of an OIB-type enriched mantle in their source. q
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.