An important problem in software engineering is the automated discovery of noncrashing occasional bugs. In this work we address this problem and show that mining of weighted call graphs of program executions is a promising technique. We mine weighted graphs with a combination of structural and numerical techniques. More specifically, we propose a novel reduction technique for call graphs which introduces edge weights. Then we present an analysis technique for such weighted call graphs based on graph mining and on traditional feature selection schemes. The technique generalises previous graph mining approaches as it allows for an analysis of weights. Our evaluation shows that our approach finds bugs which previous approaches cannot detect so far. Our technique also doubles the precision of finding bugs which existing techniques can already localise in principle.
Time-series data is increasingly collected in many domains. One example is the smart electricity infrastructure, which generates huge volumes of such data from sources such as smart electricity meters. Although today this data is used for visualization and billing in mostly 15-min resolution, its original temporal resolution frequently is more finegrained, e.g., seconds. This is useful for various analytical applications such as short-term forecasting, disaggregation and visualization. However, transmitting and storing huge amounts of such fine-grained data is prohibitively expensive in terms of storage space in many cases. In this article, we present a compression technique based on piecewise regression and two methods which describe the performance of the compression. Although our technique is a general approach for time-series compression, smart grids serve as our running example and as our evaluation scenario. Depending on the data and the use-case scenario, the technique compresses data by ratios of up to factor 5,000 while maintaining its usefulness for analytics. The proposed technique has outperformed related work and has been applied to three real-world energy datasets in different scenarios. Finally, we show that the proposed compression technique can be implemented in a state-of-the-art database management system.
Abstract. Defect localisation is essential in software engineering and is an important task in domain-specific data mining. Existing techniques building on call-graph mining can localise different kinds of defects. However, these techniques focus on defects that affect the controlflow and are agnostic regarding the dataflow. In this paper, we introduce dataflowenabled call graphs that incorporate abstractions of the dataflow. Building on these graphs, we present an approach for defect localisation. The creation of the graphs and the defect localisation are essentially data mining problems, making use of discretisation, frequent subgraph mining and feature selection. We demonstrate the defect-localisation qualities of our approach with a study on defects introduced into Weka. As a result, defect localisation now works much better, and a developer has to investigate on average only 1.5 out of 30 methods to fix a defect.
Abstract. Writing multithreaded software for multicore computers confronts many developers with the difficulty of finding parallel programming errors. In the past, most parallel debugging techniques have concentrated on finding race conditions due to wrong usage of synchronization constructs. A widely unexplored issue, however, is that a wrong usage of non-parallel programming constructs may also cause wrong parallel application behavior. This paper presents a novel defect-localization technique for multithreaded shared-memory programs that is based on analyzing execution anomalies. Compared to race detectors that report just on wrong synchronization, this method can detect a wider range of defects affecting parallel execution. It works on a condensed representation of the call graphs of multithreaded applications and employs data-mining techniques to locate a method containing a defect. Our results from controlled application experiments show that we found race conditions, but also other programming errors leading to incorrect parallel program behavior. On average, our approach reduced in our benchmark the amount of code to be inspected to just 7.1% of all methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.