The purpose of this study was to find out if the use of 1.25-mm collimated thin-slice technique helps to detect more small pulmonary lung nodules than the use of 5 mm. A total of 100 patient examinations that allowed a reconstruction of 1.25-mm slice thickness in addition to the standard of 5-mm slices were included in a prospective study. Acquisition technique included four rows of 1-mm slices. Two sets of contiguous images were reconstructed and compared with 1.25- and 5-mm slice thickness, respectively. Two radiologists performed a film-based analysis of the images. The size and the confidence of the seen nodules were reported. We did not perform a histological verification, according to the normal clinical procedure, although it would be optimal regarding research. Statistical analysis was performed by using longitudinal analysis described by Brunner and Langer. In addition, sensitivity, specificity, negative predictive value and positive predictive value were calculated for each reader using the 1.25-mm sections as the gold standard. As an index for concordance the kappa value was used. A value of p<0.05 was regarded as significant. In 37 patients pulmonary nodules were detected. Twenty-four patients showed more than one nodule; among these, 7 patients had disseminated disease and were excluded from the study. Pulmonary nodules larger than 10 mm in size were equally well depicted with both modalities, whereas lesions smaller than 5 mm in size were significantly better depicted with 1.25 mm (p<0.05). Using 1.25 mm as the gold standard, sensitivity for 5-mm reconstruction interval was 88 and 86% for observers A and B, respectively. No false-positive results were reported for 5-mm sections. Interobserver agreement for nodule detection determined for 1.25-mm reconstruction intervals showed a k value of 0.753, indicating a good agreement, and 0.562 for 5-mm reconstruction intervals, indicating a moderate agreement. Brunner and Langer analysis showed significant differences for slice thickness and no significant difference between the observers. Reduced slice thickness demonstrated an improvement of small nodule detection, confidence levels, and interobserver agreement. Application of thin-slice multidetector-row CT may raise the sensitivity for lung nodule detection, although the higher detection rate of smaller nodules has to be evaluated from a clinical perspective and remains problematic about how the detection of small nodules will effect patient outcome.
Late-phase Gd-EOB-DTPA-enhanced images were superior for the detection of FLLs, while DWIs were most valuable for the identification of particularly small metastases. Combined interpretation of unenhanced images resulted in precise characterisation of FLLs.
With increased availability of magnetic resonance (MR) systems at ultra-high field strength for clinical studies, other organs besides the brain have received renewed consideration for MR spectroscopy (MRS). Because signal-to-noise ratio and chemical shift increase proportional to the static magnetic field, a concomitant increase in signal intensity and spectral resolution of metabolite resonances can be exploited. Improved resolution of adjacent metabolite peaks would not only provide for more accuracy of metabolite identification but also metabolite quantification. While the superiority of high-field imaging and spectroscopy has already been demonstrated clearly in the brain, this article reviewed issues around 1H MRS of the liver. These include optimization strategies such as coil technology, minimizing of motion artefacts using breath-holding and postprocessing of the spectra. Moreover, we reviewed the pertinent experience hitherto reported in the literature on potential clinical issues where liver MRS may be useful. These included determination and characterization of liver fat content, liver tumours and focal lesions. While these applications have been used experimentally, liver MRS does not yet have a clearly defined role in the clinical management of any disease state. Accordingly, it remains primarily a research modality to date.The clinical use of localized 1H magnetic resonance spectroscopy (1H MRS) in vivo first in the brain and then in the prostate has been well established and refined over the last two decades (1-5). Proton spectroscopy in other organs also has a similar long history in experimental studies, but has always been a challenge in clinical environments owing to signal distortions in moving organs, lack of diagnostic resonances and clinical non-practicability. With increased availability of MR systems at ultra-high field strength for clinical studies, other organs besides the brain have received renewed attention. Because signal intensity and chemical shift increase proportional to the static magnetic field B0, a concomitant increase in signalto-noise ratio (SNR) and spectral resolution of metabolite resonances is expected.The ability to resolve different adjacent metabolite peaks better would not only provide for more accuracy of metabolite identification but also metabolite quantification. Hence, the conclusion as to which peaks are abnormal would be facilitated (6, 7).In vitro MRS of tissue extracts, which are mostly performed of fields of 4 11.7 T (500 MHz) today, allows a glimpse at the potentially detectable metabolic tissue components in vivo and may itself provide for a comprehensive metabolic profile of steady-state concentrations in endogenous pathways (8-10). MRS in vivo is more difficult to perform because of nonideal conditions including the need for gradient shimming owing to field inhomogeneities and the need for water suppression and localization with appropriate pulse sequences. It is characterized by a much poorer spectral resolution and SNR than in vitro MRS of...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.