A cylindrical inductively coupled plasma source (ICPS) is optimized for nitrogen atom production. How to operate in the bright mode (H-mode) in pure nitrogen at relatively low applied power is explained. Actinometry is developed for a quantitative determination of the nitrogen dissociation fraction in the ICPS. These results are compared with those obtained outside the ICPS by modulated beam mass spectrometry. A qualitative agreement is obtained between the nitrogen dissociative fraction inside and outside the ICPS. The higher magnitude of the dissociation fraction given by mass spectrometry compared with that derived from actinometry is explained by the contribution of dissociative recombination of
near the exit hole of the ICPS. A dissociation fraction of up to 0.7 is observed by mass spectrometry. Some results are also reported for argon–nitrogen gas mixtures.
Despite multiple orbiter and landed missions to extraterrestrial bodies in the solar system, including Mars and Titan, we still know relatively little about the detailed chemical composition and quantity of organics and biomolecules in those bodies. For chemical analysis on astrobiologically relevant targets such as Mars, Europa, Titan, and Enceladus, instrumentation should be extremely sensitive and capable of analyzing a broad range of organic molecules. Microchip capillary electrophoresis (μCE) with laser-induced fluorescence (LIF) detection provides this required sensitivity and targets a wide range of relevant markers but, to date, has lacked the necessary degree of automation for spaceflight applications. Here we describe a fully integrated microfluidic device capable of performing automated end-to-end analyses of amino acids by μCE with LIF detection. The device integrates an array of pneumatically actuated valves and pumps for autonomous fluidic routing with an electrophoretic channel. Operation of the device, including manipulation of liquids for sample pretreatment and electrophoretic analysis, was performed exclusively via computer control. The device was validated by mixing of laboratory standards and labeling of amino acids with Pacific Blue succinimidyl ester followed by electrophoretic analysis. To our knowledge, this is the first demonstration of completely automated end-to-end μCE analyses on a single, fully integrated microfluidic device.
We have used molecular beam epitaxy (MBE) based delta-doping technology to demonstrate nearly 100% internal quantum efficiency (QE) on silicon electron-multiplied charge-coupled devices (EMCCDs) for single photon counting detection applications. We used atomic layer deposition (ALD) for antireflection (AR) coatings and achieved atomic-scale control over the interfaces and thin film materials parameters. By combining the precision control of MBE and ALD, we have demonstrated more than 50% external QE in the far and near ultraviolet in megapixel arrays. We have demonstrated that other important device performance parameters such as dark current are unchanged after these processes. In this paper, we briefly review ultraviolet detection, report on these results, and briefly discuss the techniques and processes employed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.