When applying numerical methods for the computation of stationary waves from the Helmholtz equation, one obtains 'numerical waves' that are dispersive also in non-dispersive media. The numerical wave displays a phase velocity that depends on the parameter k of the Helmholtz equation. In dispersion analysis, the phase difference between the exact and the numerical solutions is investigated. In this paper, the authors' recent result on the phase difference for one-dimensional problems is numerically evaluated and discussed in the context of other work directed to this topic. It is then shown that previous error estimates in HI-norm are of nondispersive character but hold for medium or high wavenumber on extremely refined mesh only. On the other hand, recently proven error estimates for constant resolution contain a pollution term. With certain assumptions on the exact solution, this term is of the order of the phase difference. Thus a link is established between the results of dispersion analysis and the results of numerical analysis. Throughout the paper, the presentation and discussion of theoretical results is accompanied by numerical evaluation of several model problems. Special attention is given to the performance of the Galerkin method with a higher order of polynomial approximation p(h-p-version). KEY WORDS: Helmholtz equation; finite element method; error analysis c Consider the one-dimensional case. The Helmholtz equation u" + k2u = 0 has fundamental solutions of the form u = exp( propagating waves of the form u = exp(i( ikx). These stationary solutions correspond to kx -o~t ) )
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.