The optical, structural, and electrical properties of thin layers made from poly(3‐hexylthiophene) (P3HT) samples of different molecular weights are presented. As reported in a previous paper by Kline et al., Adv. Mater. 2003, 15, 1519, the mobilities of these layers are a strong function of the molecular weight, with the largest mobility found for the largest molecular weight. Atomic force microscopy studies reveal a complex polycrystalline morphology which changes considerably upon annealing. X‐ray studies show the occurrence of a layered phase for all P3HT fractions, especially after annealing at 150 °C. However, there is no clear correlation between the differences in the transport properties and the data from structural investigations. In order to reveal the processes limiting the mobility in these layers, the transistor properties were investigated as a function of temperature. The mobility decreases continuously with increasing temperatures; with the same trend pronounced thermochromic effects of the P3HT films occur. Apparently, the polymer chains adopt a more twisted, disordered conformation at higher temperatures, leading to interchain transport barriers. We conclude that the backbone conformation of the majority of the bulk material rather than the crystallinity of the layer is the most crucial parameter controlling the charge transport in these P3HT layers. This interpretation is supported by the significant blue‐shift of the solid‐state absorption spectra with decreasing molecular weight, which is indicative of a larger distortion of the P3HT backbone in the low‐molecular weight P3HT layers.
The fact that organic solar cells perform efficiently despite the low dielectric constant of most photoactive blends initiated a long-standing debate regarding the dominant pathways of free charge formation. Here, we address this issue through the accurate measurement of the activation energy for free charge photogeneration over a wide range of photon energy, using the method of time-delayed collection field. For our prototypical low bandgap polymer:fullerene blends, we find that neither the temperature nor the field dependence of free charge generation depend on the excitation energy, ruling out an appreciable contribution to free charge generation though hot carrier pathways. On the other hand, activation energies are on the order of the room temperature thermal energy for all studied blends. We conclude that charge generation in such devices proceeds through thermalized charge transfer states, and that thermal energy is sufficient to separate most of these states into free charges.
Aggregation of chromophores in the solid state commonly causes undesirable red shifts in
the emission spectra and/or emission quenching. To overcome this problem, we have prepared soluble
perylenetetracarboxidiimide dyes in which the chromophores are effectively shielded by polyphenylene
dendrimers attached in the bay positions. Models show that attachment of the shielding units in the bay
position should provide more efficient shielding than attaching them via the imide moieties. The
dendrimers possess excellent film-forming properties due to alkyl substituents on their peripheries. The
lack of a red shift in emission upon going from solution to the solid state indicates the dendrons suppress
interaction of the emissive cores, leading to pure red-orange emission. Single-layer LEDs produce red-orange emission with relatively low efficiency especially for the higher generation dendrons, which is
attributed to poor charge conduction. LEDs using blends of the dendrimers and the undendronized dye
as a model compound in PVK have been investigated, and a model to extract relative charge injection
rates through the dendritic scaffold from the spectral contributions in the EL spectra is developed.
We report that the performances of blue polymer electrophosphorescent devices are crucially depending on the choice of the electron transporting material incorporated into the emissive layer. Devices with 1,3-bis[(4-tert-butylphenyl)-1,3,4-oxidiazolyl]phenylene (OXD-7) doped at ∼40wt% into a poly(vinylcarbazole) matrix exhibited significantly higher efficiencies than those with 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), yielding maximum luminous and power efficiency values of 18.2 Cd∕A and 8.8 lm∕W, respectively. Time resolved photoluminescence measurements revealed a long lifetime phosphorescence component in layers with PBD, which we assign to significant triplet harvesting by this electron-transporting component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.