Alcanivorax borkumensis is a cosmopolitan marine bacterium that uses oil hydrocarbons as its exclusive source of carbon and energy. Although barely detectable in unpolluted environments, A. borkumensis becomes the dominant microbe in oil-polluted waters. A. borkumensis SK2 has a streamlined genome with a paucity of mobile genetic elements and energy generation–related genes, but with a plethora of genes accounting for its wide hydrocarbon substrate range and efficient oil-degradation capabilities. The genome further specifies systems for scavenging of nutrients, particularly organic and inorganic nitrogen and oligo-elements, biofilm formation at the oil-water interface, biosurfactant production and niche-specific stress responses. The unique combination of these features provides A. borkumensis SK2 with a competitive edge in oil-polluted environments. This genome sequence provides the basis for the future design of strategies to mitigate the ecological damage caused by oil spills. Supplementary information The online version of this article (doi:10.1038/nbt1232) contains supplementary material, which is available to authorized users.
Analysis of the 1,683,333-nt sequence of the pSymB megaplasmid from the symbiotic N2-fixing bacterium Sinorhizobium meliloti revealed that the replicon has a high gene density with a total of 1,570 protein-coding regions, with few insertion elements and regions duplicated elsewhere in the genome. The only copies of an essential arg-tRNA gene and the minCDE genes are located on pSymB. Almost 20% of the pSymB sequence carries genes encoding solute uptake systems, most of which were of the ATP-binding cassette family. Many previously unsuspected genes involved in polysaccharide biosynthesis were identified and these, together with the two known distinct exopolysaccharide synthesis gene clusters, show that 14% of the pSymB sequence is dedicated to polysaccharide synthesis. Other recognizable gene clusters include many involved in catabolic activities such as protocatechuate utilization and phosphonate degradation. The functions of these genes are consistent with the notion that pSymB plays a major role in the saprophytic competence of the bacteria in the soil environment.A mong the bacteria, the ␣-proteobacteria appear unusual because of the presence of multiple replicons within the same bacterial strain (1). In the case of Agrobacterium tumefaciens, the causative agent of crown gall disease, the genome contains both a linear and a circular chromosome (2). Many (but not all) of the bacteria that form N 2 -fixing root nodules on leguminous plants are characterized by the presence of multiple plasmids greater than 400 kb in size. In the case of the N 2 -fixing symbiont Sinorhizobium meliloti, there are three replicons, a 3,654-kb circular chromosome (3, 4) and two megaplasmids 1,354 and 1,683 kb in size (5-7). The smaller of the megaplasmids, variously called pSymA, pNod-Nif, or pRmeSU47a, is known to carry many of the genes involved in root nodule formation (nod) and nitrogen fixation (nif ) (8, 9).The 1,683-kb megaplasmid, referred to as pSymB, pExo, or pRmeSU47b, is known to carry various gene clusters involved in exopolysaccharide (EPS) synthesis, C 4 -dicarboxylate transport, and lactose metabolism (10-12). Early studies focused on mutations that abolished synthesis of the succinoglycan EPS, EPS I, because these mutations resulted in a loss of the ability to form normal N 2 -fixing root nodules. This symbiotic defect was rescued by second-site mutations that increased the synthesis of a second galactoglucan EPS (EPS II), whose biosynthetic genes were also located on the pSymB megaplasmid (13,14). Other genes located on pSymB that are required for the formation of N 2 -fixing root nodules include the C 4 -dicarboxylate (dctA) and phosphate transport (phoCDET) genes and the bacA gene (15-18). The presence of large plasmids in bacteria that form associations with plants was described over 20 years ago (19). However, with the exception of the symbiotic genes in relatively small regions of these plasmids, the broader biological role of the plasmids in the biology of the organism has remained obscure. We constructed a ...
Pseudomonas sp. strain B13 is a bacterium known to degrade chloroaromatic compounds. The properties to use 3-and 4-chlorocatechol are determined by a self-transferable DNA element, the clc element, which normally resides at two locations in the cell's chromosome. Here we report the complete nucleotide sequence of the clc element, demonstrating the unique catabolic properties while showing its relatedness to genomic islands and integrative and conjugative elements rather than to other known catabolic plasmids. As far as catabolic functions, the clc element harbored, in addition to the genes for chlorocatechol degradation, a complete functional operon for 2-aminophenol degradation and genes for a putative aromatic compound transport protein and for a multicomponent aromatic ring dioxygenase similar to anthranilate hydroxylase. The genes for catabolic functions were inducible under various conditions, suggesting a network of catabolic pathway induction. For about half of the open reading frames (ORFs) on the clc element, no clear functional prediction could be given, although some indications were found for functions that were similar to plasmid conjugation. The region in which these ORFs were situated displayed a high overall conservation of nucleotide sequence and gene order to genomic regions in other recently completed bacterial genomes or to other genomic islands. Most notably, except for two discrete regions, the clc element was almost 100% identical over the whole length to a chromosomal region in Burkholderia xenovorans LB400. This indicates the dynamic evolution of this type of element and the continued transition between elements with a more pathogenic character and those with catabolic properties.
Background: Bordetella petrii is the only environmental species hitherto found among the otherwise host-restricted and pathogenic members of the genus Bordetella. Phylogenetically, it connects the pathogenic Bordetellae and environmental bacteria of the genera Achromobacter and Alcaligenes, which are opportunistic pathogens. B. petrii strains have been isolated from very different environmental niches, including river sediment, polluted soil, marine sponges and a grass root. Recently, clinical isolates associated with bone degenerative disease or cystic fibrosis have also been described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.