Bimetric theory describes gravitational interactions in the presence of an extra spin-2 field. Previous work has suggested that its cosmological solutions are generically plagued by instabilities. We show that by taking the Planck mass for the second metric, $M_f$, to be small, these instabilities can be pushed back to unobservably early times. In this limit, the theory approaches general relativity with an effective cosmological constant which is, remarkably, determined by the spin-2 interaction scale. This provides a late-time expansion history which is extremely close to $\Lambda$CDM, but with a technically-natural value for the cosmological constant. We find $M_f$ should be no larger than the electroweak scale in order for cosmological perturbations to be stable by big-bang nucleosynthesis. We further show that in this limit the helicity-0 mode is no longer strongly-coupled at low energy scales.Comment: 8+2 pages, 2 tables. Version published in PLB. Minor typo corrections from v
We find the general conditions for viable cosmological solution at the background level in bigravity models. Furthermore, we constrain the parameters by comparing to the Union 2.1 supernovae catalog and identify, in some cases analytically, the best fit parameter or the degeneracy curve among pairs of parameters. We point out that a bimetric model with a single free parameter predicts a simple relation between the equation of state and the density parameter, fits well the supernovae data and is a valid and testable alternative to ΛCDM. Additionally, we identify the conditions for a phantom behavior and show that viable bimetric cosmologies cannot cross the phantom divide.
Bimetric gravity theories allow for many different types of cosmological solutions, but not all of them are theoretically allowed. In this work we discuss the conditions to satisfy the Higuchi bound and to avoid gradient instabilities in the scalar sector at the linear level. We find that in expanding universes the ratio of the scale factors of the reference and observable metric has to increase at all times. This automatically implies a ghost-free helicity-2 and helicity-0 sector and enforces a phantom dark energy. Furthermore, the condition for the absence of gradient instabilities in the scalar sector will be analyzed. Finally, we discuss whether cosmological solutions can exist, including exotic evolutions like bouncing cosmologies, in which both the Higuchi ghost and scalar instabilities are absent at all times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.