Ultraviolet irradiation of Escherichia coli cells with a low level of 5-bromouracil incorporated produces DNA double-strand breaks by single photochemical events, one such break per 100 single-strand breaks, the latter assayed in alkali-denatured DNA. About 2.5--4 double-strand breaks are produced per "lethal hit," compared with about 6 double-strand breaks per lethal hit induced by gamma rays. These results are consistent with the hypothesis that an unrepaired DNA double-strand break is a major lethal event in both cases. The increase in sensitivity to ultraviolet (measured by colony-forming ability) seems linear in the number of bromouracils incorporated (0--20% of the thymines), and the linear relationship is much the same for incorporation in one or in both strands of the DNA double helix.
One of the methods currently being used to treat choroidal melanoma employs an episcleral plaque containing I-125 radioactive seeds. However, comprehensive dosimetry studies on the plaque are scarce and controversial. For this work, we use film to study the dosimetry outside the lip of the gold shield of the eye plaque. This lip around the gold shield was made to protect the critical structures behind and adjacent to the lesion. Since the changes of energy spectrum of I-125 in tissue are negligible, film dosimetry seems to be a logical choice because of high spatial resolution required around the lip of the gold plaque. For this study, we first established an H and D curve with dose expressed in a unit of specific dose rate constant. This avoids absolute dose measurements. All film density measurements are made with a 1-mm aperture scan, normalized to the density at the prescription point for tumor of 3-5-mm apical height, i.e., 5 mm from the interior surface of sclera, and converted to percentage isodose curves. With a gold shield, it is found that when the plaque is placed against the optical nerve, the optical disk and macula, located at 2 mm outside the lip, on the exterior surface of sclera, may receive 85% of the prescription dose for a 12-mm plaque and 58% for a 16-mm plaque. For tumors of 8-mm apical height, the optical nerve would receive more than the prescription dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.