Tau aggregates propagate in brain cells and transmit to neighboring cells as well as anatomically connected brain regions by prion-like mechanisms. Soluble tau aggregates (tau oligomers) are the most toxic species that initiate neurodegeneration in tauopathies, such as Alzheimer’s disease (AD), progressive supranuclear palsy (PSP), and dementia with Lewy bodies (DLB). Exogenous tau aggregates have been shown to be internalized by brain cells; however, the precise cellular and molecular mechanisms that underlie the internalization of tau oligomers (TauO) remain elusive. Using brain-derived tau oligomers (BDTOs) from AD, PSP, and DLB patients, we investigated neuronal internalization mechanisms of BDTOs, including the heparan sulfate proteoglycan (HSPG)-mediated pathway, clathrin-mediated pathway, and caveolae-mediated pathway. Here, we demonstrated that the HSPG-mediated pathway regulates internalization of BDTOs from AD and DLB, while HSPG-mediated and other alternative pathways are involved in the internalization of PSP-derived tau oligomers. HSPG antagonism significantly reduced the internalization of TauO, prevented tau translocation to the endosomal–lysosomal system, and decreased levels of hyperphosphorylated tau in neurons, the well-known contributor for neurofibrillary tangles (NFT) accumulation, degeneration of neurons, and cognitive decline. Furthermore, siRNA-mediated silencing of heparan sulfate (HS)-synthesizing enzyme, exostosin-2, leads to decreased internalization of BDTOs, prevented tau-induced autophagy–lysosomal pathway impairment, and decreased hyperphosphorylated tau levels. Collectively, these findings suggest that HSPG-mediated endocytosis and exostsin-2 are involved in neuronal internalization of TauO and subsequent tau-dependent neuropathology in AD and DLB.
The ability to simultaneously visualize the presence, abundance, location and functional state of many targets in cells and tissues has been described as a true next-generation approach in immunohistochemistry (IHC). A typical requirement for multiplex IHC (mIHC) is the use of different animal species for each primary (1°Ab) and secondary (2°Ab) antibody pair. Although 1°Abs from different species have been used with differently labeled species-specific 2°Abs, quite often the appropriate combination of antibodies is not available. More recently, sequential detection of multiple antigens using 1°Abs from the same species used a microwaving treatment between successive antigen detection cycles to elute previously bound 1°Ab/2°Ab complex and therefore to prevent the cross-reactivity of anti-species 2°Abs used in subsequent detection cycles. We present here a fully automated 1°Ab/2°Ab complex heat deactivation (HD) method on Ventana's BenchMark ULTRA slide stainer. This method is applied to detection using fluorophore-conjugated tyramide deposited on the tissue and takes advantage of the strong covalent bonding of the detection substrate to the tissue, preventing its elution in the HD process. The HD process was characterized for (1) effectiveness in preventing Ab cross-reactivity, (2) impact on the epitopes and (3) impact on the fluorophores. An automated 5-plex fluorescent IHC assay was further developed using the HD method and rabbit 1°Abs for CD3, CD8, CD20, CD68 and FoxP3 immune biomarkers in human tissue specimens. The fluorophores were carefully chosen and the narrow-band filters were designed to allow visualization of the staining under fluorescent microscope with minimal bleed through. The automated 5-plex fluorescent IHC assay achieved staining results comparable to the respective single-plex chromogenic IHC assays. This technology enables automated mIHC using unmodified 1°Abs from same species and the corresponding anti-species 2°Ab on a clinically established automated platform to ensure staining quality, reliability and reproducibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.