The aquaponic principle is the coupling of animal aquaculture (e.g. fish) with plant production (e.g. vegetables) for saving resources. At present, various definitions of aquaponics exist, some bearing the risk of misinterpretation by dismissing the original meaning or being contradictory. In addition, there is no standard terminology for the aspects of coupling between the aquaponic subsystems. In this study, we addressed both issues. (1) We developed new or revised definitions that are summarised by: Aquaponic farming comprises aquaponics (which couples tank‐based animal aquaculture with hydroponics) and trans‐aquaponics, which extends aquaponics to tankless aquaculture as well as non‐hydroponics plant cultivation methods. Within our conceptual system, the term aquaponics corresponds to the definitions of FAO and EU. (2) A system analysis approach was utilised to explore different aquaponic setups aiming to better describe the way aquaponic subsystems are connected. We introduced the new terms ‘coupling type’ and ‘coupling degree’, where the former qualitatively characterises the water‐mediated connections of aquaponic subsystems. A system with on‐demand nutrient water supply for the independent operating plant cultivation is an ‘on‐demand coupled system’ and we propose to deprecate the counterintuitive term ‘decoupled system’ for this coupling type. The coupling degree comprises a set of parameters to quantitatively determine the coupling's efficiency of internal streams, for example, water and nutrients. This new framework forms a basis for improved communication, provides a uniform metric for comparing aquaponic facilities, and offers criteria for facility optimisation. In future system descriptions, it will simplify evaluation of the coupling's contribution to sustainability of aquaponics.
Abstract. A circular city builds upon the principles of circular economy, which key concepts of reduce, reuse, recycle, and recover lead to a coupling of resources: products and by-products of one production process become the input of another one, often in local vicinity. However, sources, types and available quantities of underutilised resources in cities are currently not well documented. Therefore, there is a missing link in the information flow of the circular city between potential users and site-specific data. To close this gap, this study introduces the concept of a site resource inventory in conjunction with a new information model that can manage the data needed for advancing the circular city. A core taxonomy of terms is established as the foundation for the information model: the circular economy is defined as a network of circular economy entities which are regarded as black boxes and connected by their material and energy inputs and outputs. This study proposes a site resource inventory, which is a collection of infrastructural and building-specific parameters that assess the suitability of urban sites for a specific circular economy entity. An information model is developed to manage the data that allows the entities to effectively organise the allocation and use of resources within the circular city and its material and energy flows. The application of this information model was demonstrated by comparing the demand and availability of required alternative resources (e.g. greywater) at a hypothetical site comprising a commercial aquaponic facility (synergistic coupling of fish and vegetables production) and a residential building. For the implementation of the information model a proposal is made which uses the publicly available geodata infrastructure of OpenStreetMap and adopts its tag system to operationalise the integration of circular economy data by introducing new tags. A site resource inventory has the potential to bring together information needs and it is thus intended to support companies when making their business location decisions or to support local authorities in the planning process.
Aquaponics, the water-reusing production of fish and crops, is taken as an example to investigate the consequences of upscaling a nature-based solution in a circular city. We developed an upscaled-aquaponic scenario for the German metropolis of Berlin, analysed the impacts, and studied the system dynamics. To meet the annual fish, tomato, and lettuce demand of Berlin’s 3.77 million residents would require approximately 370 aquaponic facilities covering a total area of 224 hectares and the use of different combinations of fish and crops: catfish/tomato (56%), catfish/lettuce (13%), and tilapia/tomato (31%). As a predominant effect, in terms of water, aquaponic production would save about 2.0 million m3 of water compared to the baseline. On the supply-side, we identified significant causal link chains concerning the Food-Water-Energy nexus at the aquaponic facility level as well as causal relations of a production relocation to Berlin. On the demand-side, a ‘freshwater pescatarian diet’ is discussed. The new and comprehensive findings at different system levels require further investigations on this topic. Upscaled aquaponics can produce a relevant contribution to Berlin’s sustainability and to implement it, research is needed to find suitable sites for local aquaponics in Berlin, possibly inside buildings, on urban roofscape, or in peri-urban areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.