The goal of open information extraction (OIE) is to extract facts from natural language text, and to represent them as structured triples of the form subject, predicate, object . For example, given the sentence »Beethoven composed the Ode to Joy.«, we are expected to extract the triple Beethoven, composed, Ode to Joy . In this work, we systematically compare different neural network architectures and training approaches, and improve the performance of the currently best models on the OIE16 benchmark (Stanovsky and Dagan, 2016) by 0.421 F 1 score and 0.420 AUC-PR, respectively, in our experiments (i.e., by more than 200% in both cases). Furthermore, we show that appropriate problem and loss formulations often affect the performance more than the network architecture.
The logical negation property (LNP), which implies generating different predictions for semantically opposite inputs (p is true iff ¬p is false), is an important property that a trustworthy language model must satisfy. However, much recent evidence shows that large-size pre-trained language models (PLMs) do not satisfy this property. In this paper, we perform experiments using probing tasks to assess PLMs' LNP understanding. Unlike previous studies that only examined negation expressions, we expand the boundary of the investigation to lexical semantics. Through experiments, we observe that PLMs violate the LNP frequently. To alleviate the issue, we propose a novel intermediate training task, named meaning-matching, designed to directly learn a meaning-text correspondence, instead of relying on the distributional hypothesis. Through multiple experiments, we find that the task enables PLMs to learn lexical semantic information. Also, through fine-tuning experiments on 7 GLUE tasks, we confirm that it is a safe intermediate task that guarantees a similar or better performance of downstream tasks. Finally, we observe that our proposed approach 1 outperforms our previous counterparts despite its time and resource efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.