This paper introduces a new initialization method for knowledge graph (KG) embedding that can leverage ontological information in knowledge graph completion problems, such as link classification and link prediction. Although the initialization method is general and applicable to different KG embedding approaches in the literature, such as TransE or RESCAL, this paper experiments with deep learning and specifically with the neural tensor network (NTN) model. The experimental results show that the proposed method can improve link classification for a given relation by up to 15%. In a second contribution, the proposed method allows for addressing a problem not studied in the literature and introduced here as "KG completion with fresh entities". This is the use of KG embeddings for KG completion when one or several of the entities in a triple (head, relation, tail) has not been observed in the training phase.
In this paper, we introduce the new task of controllable text edition, in which we take as input a long text, a question, and a target answer, and the output is a minimally modified text, so that it fits the target answer. This task is very important in many situations, such as changing some conditions, consequences, or properties in a legal document, or changing some key information of an event in a news text. This is very challenging, as it is hard to obtain a parallel corpus for training, and we need to first find all text positions that should be changed and then decide how to change them. We constructed the new dataset WIKIBIOCTE for this task based on the existing dataset WIKIBIO (originally created for table-to-text generation). We use WIKIBIOCTE for training, and manually labeled a test set for testing. We also propose novel evaluation metrics and a novel method for solving the new task. Experimental results on the test set show that our proposed method is a good fit for this novel NLP task.
The goal of open information extraction (OIE) is to extract facts from natural language text, and to represent them as structured triples of the form subject, predicate, object . For example, given the sentence »Beethoven composed the Ode to Joy.«, we are expected to extract the triple Beethoven, composed, Ode to Joy . In this work, we systematically compare different neural network architectures and training approaches, and improve the performance of the currently best models on the OIE16 benchmark (Stanovsky and Dagan, 2016) by 0.421 F 1 score and 0.420 AUC-PR, respectively, in our experiments (i.e., by more than 200% in both cases). Furthermore, we show that appropriate problem and loss formulations often affect the performance more than the network architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.