Biofilm growth has been observed in Soviet/Russian (Salyuts and Mir), American (Skylab), and International (ISS) Space Stations, sometimes jeopardizing key equipment like spacesuits, water recycling units, radiators, and navigation windows. Biofilm formation also increases the risk of human illnesses and therefore needs to be well understood to enable safe, long-duration, human space missions. Here, the design of a NASA-supported biofilm in space project is reported. This new project aims to characterize biofilm inside the International Space Station in a controlled fashion, assessing changes in mass, thickness, and morphology. The space-based experiment also aims at elucidating the biomechanical and transcriptomic mechanisms involved in the formation of a “column-and-canopy” biofilm architecture that has previously been observed in space. To search for potential solutions, different materials and surface topologies will be used as the substrata for microbial growth. The adhesion of bacteria to surfaces and therefore the initial biofilm formation is strongly governed by topographical surface features of about the bacterial scale. Thus, using Direct Laser-Interference Patterning, some material coupons will have surface patterns with periodicities equal, above or below the size of bacteria. Additionally, a novel lubricant-impregnated surface will be assessed for potential Earth and spaceflight anti-biofilm applications. This paper describes the current experiment design including microbial strains and substrata materials and nanotopographies being considered, constraints and limitations that arise from performing experiments in space, and the next steps needed to mature the design to be spaceflight-ready.
In this study, the anisotropic spreading behavior of Poly-(alpha)-olefin oil (kinematic viscosity of 7.8 cSt at 100 °C) on stainless steel samples (AISI 403) having periodic, channel-like structures produced by hot micro-coining (periodicity of 400 μm and depth of 40 μm) as well as multi-scale structures (coining and laser patterning) was investigated. These results were compared to the behavior of periodic channels fabricated by direct laser interference patterning (periodicity of 5 μm and depth of 1 μm). The spreading behavior of a droplet (3 μl) was studied for a polished reference as well as for all modified surfaces and recorded by a digital light microscope. From this study, it can be concluded that the polished reference leads to an isotropic spreading behavior resulting from the stochastic surface roughness without any preferential orientation whereas all structured samples induce an anisotropic spreading behavior but with different degrees of anisotropy. The observed behavior can be well correlated with pinning induced by the grooves thus hindering the droplet propagation perpendicular to the grooves and the generation of capillary forces which favor the droplet movement along the grooves. It could be proved that the structural depth is a very desicive parameter with regard to the resulting spreading behavior. The multi-scale surface combining large structural depths and the steeper pattern geometry of the micro-coined surface with much smaller grooves of the laser-structure shows the largest anisotropic spreading behavior due to a stronger pinning and increased capillary forces.
Craters caused by high voltage ignition discharges on the surface of materials are important features of the erosion processes of electrodes. In this paper, a thermal simulation of the crater formation on a platinum cathode is carried out by means of the finite element method (FEM). The model is based on the modelling of cathode spots and includes phenomena such as ion bombardment, electron emission, vaporization, melting and heat conduction. The surface of the cathode is submitted to various ion power densities (1010–1012 W m−2) of different durations (0.1, 1 and 10 µs) over a disc of a radius a = 10 µm. By comparing the results of the simulation with experimental data of molten depths and molten volumes, characteristic values of the time, the ion power density and the current involved in the crater formation are determined. These values are related to the electrical characteristic of an ignition discharge, permitting the identification of the phase producing the crater. Furthermore, the contribution of the different heat dissipation mechanisms is evaluated and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.