Herpesvirus hominis was isolated from the trigeminal ganglion obtained at autopsy from 1 of 22 patients with no clinical evidence of active herpetic disease, and from one patient with malignant lymphoma who died with herpes zoster on the abdomen, pulmonary cytomegalic inclusion disease, and possible oral herpes simplex. Virus was isolated by cocultivation of explants of ganglion with monolayers of Vero green monkey kidney cells and required 3 weeks of culture before viral cytopathic effects were evident. These observations support the concept that latent infection of sensory ganglia may be the source of virus in recurrent herpetic disease in man.
Spiroplasma, small motile wall-less bacteria, are linked by molecular and serological studies to the transmissible spongiform encephalopathies (TSEs), which include scrapie in sheep, chronic wasting disease (CWD) in deer and Creutzfeldt-Jakob disease in humans. In this study, two experiments were undertaken to determine the role of spiroplasma in the pathogenesis of TSE. In experiment 1, Spiroplasma mirum, a rabbit tick isolate that had previously been shown to experimentally induce spongiform encephalopathy in rodents, was inoculated intracranially (IC) into ruminants. S. mirum-inoculated deer manifested clinical signs of TSE after 1.5 to 5.5 months incubation. The deer, as well as sheep and goats, inoculated with S. mirum developed spongiform encephalopathy in a dose-dependent manner. In experiment 2, spiroplasma closely related to S. mirum were isolated from TSE-affected brains via passage in embryonated eggs, and propagated in cell-free M1D media. Spiroplasma spp. isolates from scrapie-affected sheep brain and from CWD-affected deer brain inoculated IC into sheep and goats induced spongiform encephalopathy closely resembling natural TSE in these animals. These data show spiroplasma to be consistently associated with TSE, and able experimentally to cause TSE in ruminant animal models, therein questioning the validity of studies that have concluded the prion, a miss-folded protease-resistant protein that builds up in TSE brains during the course of the disease, to be the sole causal agent. The spiroplasma infection models reported here will be important for investigating factors involved in the pathogenesis of TSE since ruminants are the natural hosts.
Malignant transformation in a craniopharyngioma has not been described previously. A 49-year-old woman presented with recurrence of a suprasellar craniopharyngioma diagnosed 35 years previously. The patient had been treated surgically for recurrence on five occasions. Radiation therapy had been administered 7 years before the final presentation. Tissue obtained from the fifth operation revealed malignant degeneration in a typical craniopharyngioma.
Interferon (IFN)-alpha is the standard therapy for the treatment of chronic hepatitis C, but the mechanisms underlying its antiviral action are not well understood. In this report, we demonstrated that IFN-alpha, -beta and -gamma inhibit replication of the hepatitis C virus (HCV) in a cell culture model at concentrations between 10 and 100 IU/ml. We demonstrated that the antiviral actions each of each these IFNs are targeted to the highly conserved 5' untranslated region of the HCV genome, and that they directly inhibit translation from a chimeric clone between full-length HCV genome and green fluorescent protein (GFP). This effect is not limited to HCV internal ribosome entry site (IRES), since these IFNs also inhibit translation of the encephalomyocardititis virus (EMCV) chimeric mRNA in which GFP is expressed by IRES-dependent mechanisms (pCITE-GFP). These IFNs had minimal effects on the expression of mRNAs from clones in which translation is not IRES dependent. We conclude that IFN-alpha, -beta and -gamma inhibit replication of sub-genomic HCV RNA in a cell culture model by directly inhibiting two internal translation initiation sites of HCV- and EMCV-IRES sequences present in the dicistronic HCV sub-genomic RNA. Results of this in vitro study suggest that selective inhibition of IRES-mediated translation of viral polyprotein is a general mechanism by which IFNs inhibits HCV replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.