In the last fifteen years several novel porous silica materials, which are periodically structured on the mesoscopic length scale, have been synthesized. They are of broad interest for fundamental studies of surface-substrate interactions, for studies of the dynamics of guest molecules in confinement and for studies of the effect of confinement on the structural and thermophysical properties of fluids. Examples of such confinement effects include the change of the freezing and melting points or glass transitions of the confined liquids. These effects are studied by combinations of several NMR techniques, such as (15)N- and (2)H-solid-state NMR line shape analysis, MAS NMR and NMR diffusometry with physico-chemical characterization techniques such as nitrogen adsorption and small angle diffraction of neutrons or X-rays. This combination does not require crystalline samples or special clean and well defined surfaces such as conventional surface science techniques, but can work with typical ill-defined real world systems. The review discusses, after a short introduction, the salient features of these materials and the applied NMR experiments to give the reader a basic knowledge of the systems and the experiments. The rest of the review then focuses on the structural and dynamical properties of guest molecules confined in the mesoporous silica. It is shown that the confinement into the pores leads to fascinating new features of the guests, which are often not known for their bulk phases. These features depend strongly on the interplay of the their interactions with the silica surface and their mutual interactions.
In the current study two new classes of stabile, catalytic active nanomaterials are investigated. The first class of nanoparticles consists of an inner metal core. To stabilize their structure the metal core is surrounded by organic ligands or embedded in a polymer. The second class consists of catalysts immobilized on mesoporous silica supports of SBA-3 type silica. Employing a combination of 1 H, 2 H, 13 C and 29 Si-solid state NMR spectroscopy the structure of the catalysts is analyzed. As a simple model for the catalytic properties of the particles, the activation of 2 H 2 gas on the surface of the particles is studied. Employing 1 H and 2 H gas phase NMR the kinetics of simple catalytic model reactions is studied. Employing 2 H-NMR solid state NMR spectroscopy, the interaction of the metal surface with the substrate is characterized and kinetic data, which characterize the mobility of the deuterium on the surface, are extracted. For the interpretation of these data, parallel NMR studies of model g 2 -bound transition metal complexes are employed, which allow, owing to their simpler geometry and higher sensitivity, a quantitative modeling of the spin dynamics in the NMR experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.