Computed tomography is a noninvasive technique for reconstructing an object from projection data. If the object consists of only a few materials, discrete tomography allows us to use prior knowledge of the gray values corresponding to these materials to improve the accuracy of the reconstruction. The Discrete Algebraic Reconstruction Technique (DART) is a reconstruction algorithm for discrete tomography. DART can result in accurate reconstructions, computed by iteratively refining the boundary of the object. However, this boundary update is not robust against noise and DART does not work well when confronted with high noise levels.In this paper we propose a modified DART algorithm, which imposes a set of soft constraints on the pixel values. The soft constraints allow noise to be spread across the whole image domain, proportional to these constraints, rather than across boundaries. The results of our numerical experiments show that SDART yields more accurate reconstructions, compared to DART, if the signal-to-noise ratio is low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.