Regorafenib is an orally administered inhibitor of protein kinases involved in tumor angiogenesis, oncogenesis, and maintenance of the tumor microenvironment. Phase III studies showed that regorafenib has efficacy in patients with advanced gastrointestinal stromal tumors or treatment‐refractory metastatic colorectal cancer. In clinical studies, steady‐state exposure to the M‐2 and M‐5 metabolites of regorafenib was similar to that of the parent drug; however, the contribution of these metabolites to the overall observed clinical activity of regorafenib cannot be investigated in clinical trials. Therefore, we assessed the pharmacokinetics and pharmacodynamics of regorafenib, M‐2, and M‐5 in vitro and in murine xenograft models. M‐2 and M‐5 showed similar kinase inhibition profiles and comparable potency to regorafenib in a competitive binding assay. Inhibition of key target kinases by all three compounds was confirmed in cell‐based assays. In murine xenograft models, oral regorafenib, M‐2, and M‐5 significantly inhibited tumor growth versus controls. Total peak plasma drug concentrations and exposure to M‐2 and M‐5 in mice after repeated oral dosing with regorafenib 10 mg/kg/day were comparable to those in humans. In vitro studies showed high binding of regorafenib, M‐2, and M‐5 to plasma proteins, with unbound fractions of ~0.6%, ~0.9%, and ~0.4%, respectively, in murine plasma and ~0.5%, ~0.2%, and ~0.05%, respectively, in human plasma. Estimated free plasma concentrations of regorafenib and M‐2, but not M‐5, exceeded the IC50 at human and murine VEGFR2, suggesting that regorafenib and M‐2 are the primary contributors to the pharmacologic activity of regorafenib in vivo.
A general method for noncompetitive immunoassay of small analytes using affinity probe capillary electrophoresis (APCE) is demonstrated using digoxin as a model analyte. A uniform immunoreagent was prepared from a single-chain antibody (scFv) gene specific for digoxin. Site-directed mutagenesis introduced a unique cysteine residue for uniform labeling with a thiol-reactive fluorochrome. After expression in E. coli, the scFv was purified by immobilized metal affinity chromatography (IMAC) using an added C-terminal 6-histidine sequence. The protein was renatured and labeled while immobilized on the IMAC resin. After 0.02-microm filtration to remove microaggregates, the resulting reagent was highly uniform and stable at -12 degrees C for at least 1 year. Three formats of APCE using the scFv reagent were explored. A "mix-and-inject" assay optimized for low detection limits demonstrated analysis of 10 pM digoxin in aqueous standard solutions in 10 min. A rapid mix-and-inject format in a short capillary allowed detection of 1 nM digoxin in 1 min. Digoxin samples in serum and urine were injected directly after 10-fold dilution. In combination with solid-phase extraction, 400 fM digoxin was detected in 1 mL of serum. Including solid-phase extraction, reproducibility was within 2.5%, and the linear range was 3 orders of magnitude. The strategy adopted in this paper should be of general use in the low-level analysis of small analytes.
The purpose of this study was to investigate the antitumor activity of regorafenib and sorafenib in preclinical models of HCC and to assess their mechanism of action by associated changes in protein expression in a HCC-PDX mouse model. Both drugs were administered orally once daily at 10 mg/kg (regorafenib) or 30 mg/kg (sorafenib), which recapitulate the human exposure at the maximally tolerated dose in mice.In a H129 hepatoma model, survival times differed significantly between regorafenib versus vehicle (p=0.0269; median survival times 36 vs 27 days), but not between sorafenib versus vehicle (p=0.1961; 33 vs 28 days). Effects on tumor growth were assessed in 10 patient-derived HCC xenograft (HCC-PDX) models. Significant tumor growth inhibition was observed in 8/10 models with regorafenib and 7/10 with sorafenib; in four models, superior response was observed with regorafenib versus sorafenib which was deemed not to be due to lower sorafenib exposure. Bead-based multiplex western blot analysis was performed with total protein lysates from drug- and vehicle-treated HCC-PDX xenografts. Protein expression was substantially different in regorafenib- and sorafenib-treated samples compared with vehicle. The pattern of upregulated proteins was similar with both drugs and indicates an activated RAF/MEK/ERK pathway, but more proteins were downregulated with sorafenib versus regorafenib. Overall, both regorafenib and sorafenib were effective in mouse models of HCC, although several cases showed better regorafenib activity which may explain the observed efficacy of regorafenib in sorafenib-refractory patients.
PurposeTo evaluate the mass balance, metabolic disposition, and pharmacokinetics of a single dose of regorafenib in healthy volunteers. In addition, in vitro metabolism of regorafenib in human hepatocytes was investigated.MethodsFour healthy male subjects received one 120 mg oral dose of regorafenib containing approximately 100 µCi (3.7 MBq) [14C]regorafenib. Plasma concentrations of parent drug were derived from HPLC–MS/MS analysis and total radioactivity from liquid scintillation counting (LSC). Radiocarbon analyses used HPLC with fraction collection followed by LSC for all urine samples, plasma, and fecal homogenate extracts. For the in vitro study, [14C]regorafenib was incubated with human hepatocytes and analyzed using HPLC–LSC and HPLC–HRMS/MS.ResultsRegorafenib was the major component in plasma, while metabolite M-2 (pyridine N-oxide) was the most prominent metabolite. Metabolites M-5 (demethylated pyridine N-oxide) and M-7 (N-glucuronide) were identified as minor plasma components. The mean concentration of total radioactivity in plasma/whole blood appeared to plateau at 1–4 h and again at 6–24 h post-dose. In total, 90.5% of administered radioactivity was recovered in the excreta within a collection interval of 12 days, most of which (71.2%) was eliminated in feces, while excretion via urine accounted for 19.3%. Regorafenib (47.2%) was the most prominent component in feces and was not excreted into urine. Excreted metabolites resulted from oxidative metabolism and glucuronidation.ConclusionsRegorafenib was eliminated predominantly in feces as well as by hepatic biotransformation. The multiple biotransformation pathways of regorafenib decrease the risk of pharmacokinetic drug–drug interactions.Electronic supplementary materialThe online version of this article (10.1007/s00280-017-3480-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.